Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(8): 3532-3546, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38937628

RESUMEN

Hsp90 is a molecular chaperone that acts on its clients through an ATP-dependent and conformationally dynamic functional cycle. The cochaperone Accelerator of Hsp90 ATPase, or Ahsa1, is the most potent stimulator of Hsp90 ATPase activity. Ahsa1 stimulates the rate of Hsp90 ATPase activity through a conserved motif, NxNNWHW. Metazoan Ahsa1, but not yeast, possesses an additional 20 amino acid peptide preceding the NxNNWHW motif that we have called the intrinsic chaperone domain (ICD). The ICD of Ahsa1 diminishes Hsp90 ATPase stimulation by interfering with the function of the NxNNWHW motif. Furthermore, the NxNNWHW modulates Hsp90's apparent affinity to Ahsa1 and ATP. Lastly, the ICD controls the regulated recruitment of Hsp90 in cells and its deletion results in the loss of interaction with Hsp90 and the glucocorticoid receptor. This work provides clues to how Ahsa1 conserved regions modulate Hsp90 kinetics and how they may be coupled to client folding status.


Asunto(s)
Adenosina Trifosfatasas , Proteínas HSP90 de Choque Térmico , Proteínas HSP90 de Choque Térmico/metabolismo , Adenosina Trifosfatasas/metabolismo , Humanos , Unión Proteica , Secuencia Conservada , Secuencias de Aminoácidos , Animales , Péptidos/metabolismo , Péptidos/farmacología , Péptidos/química , Secuencia de Aminoácidos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Adenosina Trifosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Receptores de Glucocorticoides/metabolismo
2.
BMC Biol ; 22(1): 46, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414038

RESUMEN

Membranes are protein and lipid structures that surround cells and other biological compartments. We present a conceptual model wherein all membranes are organized into structural and functional zones. The assembly of zones such as receptor clusters, protein-coated pits, lamellipodia, cell junctions, and membrane fusion sites is explained to occur through a protein-lipid code. This challenges the theory that lipids sort proteins after forming stable membrane subregions independently of proteins.


Asunto(s)
Proteínas Portadoras , Proteolípidos , Proteolípidos/metabolismo , Membranas/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34521767

RESUMEN

Early stages of colorectal cancer (CRC) development are characterized by a complex rewiring of transcriptional networks resulting in changes in the expression of multiple genes. Here, we demonstrate that the deletion of a poorly studied tetraspanin protein Tspan6 in Apcmin/+ mice, a well-established model for premalignant CRC, resulted in increased incidence of adenoma formation and tumor size. We demonstrate that the effect of Tspan6 deletion results in the activation of EGF-dependent signaling pathways through increased production of the transmembrane form of TGF-α (tmTGF-α) associated with extracellular vesicles. This pathway is modulated by an adaptor protein syntenin-1, which physically links Tspan6 and tmTGF-α. In support of this, the expression of Tspan6 is frequently decreased or lost in CRC, and this correlates with poor survival. Furthermore, the analysis of samples from the epidermal growth factor receptor (EGFR)-targeting clinical trial (COIN trial) has shown that the expression of Tspan6 in CRC correlated with better patient responses to EGFR-targeted therapy involving Cetuximab. Importantly, Tspan6-positive patients with tumors in the proximal colon (right-sided) and those with KRAS mutations had a better response to Cetuximab than the patients that expressed low Tspan6 levels. These results identify Tspan6 as a regulator of CRC development and a potential predictive marker for EGFR-targeted therapies in CRC beyond RAS pathway mutations.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Cetuximab/farmacología , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Tetraspaninas/metabolismo , Tetraspaninas/fisiología , Animales , Antineoplásicos Inmunológicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Tasa de Supervivencia , Tetraspaninas/genética , Células Tumorales Cultivadas
4.
Anal Chem ; 94(46): 16042-16049, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36367338

RESUMEN

Interactions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) are involved in numerous physiological and pathophysiological processes. Many model membrane systems are available for studying GBP-GSL interactions, but a systematic investigation has not been carried out on how the nature of the model membrane affects binding. In this work, we use electrospray ionization mass spectrometry (ESI-MS), both direct and competitive assays, to measure the binding of cholera toxin B subunit homopentamer (CTB5) to GM1 ganglioside in liposomes, bilayer islands [styrene maleic acid lipid particles (SMALPs), nanodiscs (NDs), and picodiscs (PDs)], and micelles. We find that direct ESI-MS analysis of CTB5 binding to GM1 is unreliable due to non-uniform response factors, incomplete extraction of bound GM1 in the gas phase, and nonspecific CTB5-GM1 interactions. Conversely, indirect proxy ligand ESI-MS measurements show that the intrinsic (per binding site) association constants of CTB5 for PDs, NDs, and SMALPs are similar and comparable to the affinity of soluble GM1 pentasaccharide (GM1os). The observed affinity decreases with increasing GM1 content due to molecular crowding stemming from GM1 clustering. Unlike the smaller model membranes, the observed affinity of CTB5 toward GM1 liposomes is ∼10-fold weaker than GM1os and relatively insensitive to the GM1 content. GM1 glycomicelles exhibit the lowest affinity, ∼35-fold weaker than GM1os. Together, the results highlight experimental design considerations for quantitative GBP-GSL binding studies involving multisubunit GBPs and factors to consider when comparing results obtained with different membrane systems. Notably, they suggest that bilayer islands with a low percentage of GSL, wherein clustering is minimized, are ideal for assessing intrinsic strength of GBP-GSL interactions in a membrane environment, while binding to liposomes, which is sub-optimal due to extensive clustering, may be more representative of authentic cellular environments.


Asunto(s)
Gangliósido G(M1) , Glicoesfingolípidos , Toxina del Cólera/química , Gangliósido G(M1)/química , Glicoesfingolípidos/química , Liposomas , Proteínas/química , Espectrometría de Masa por Ionización de Electrospray/métodos
5.
J Biol Chem ; 295(25): 8460-8469, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358064

RESUMEN

Prions are lipidated proteins that interact with endogenous lipids and metal ions. They also assemble into multimers and propagate into the infectious scrapie form known as PrPSc The high-resolution structure of the infectious PrPSc state remains unknown, and its analysis largely relies on detergent-based preparations devoid of endogenous ligands. Here we designed polymers that allow isolation of endogenous membrane:protein assemblies in native nanodiscs without exposure to conventional detergents that destabilize protein structures and induce fibrillization. A set of styrene-maleic acid (SMA) polymers including a methylamine derivative facilitated gentle release of the infectious complexes for resolution of multimers, and a thiol-containing version promoted crystallization. Polymer extraction from brain homogenates from Syrian hamsters infected with Hyper prions and WT mice infected with Rocky Mountain Laboratories prions yielded infectious prion nanoparticles including oligomers and microfilaments bound to lipid vesicles. Lipid analysis revealed the brain phospholipids that associate with prion protofilaments, as well as those that are specifically enriched in prion assemblies captured by the methylamine-modified copolymer. A comparison of the infectivity of PrPSc attached to SMA lipid particles in mice and hamsters indicated that these amphipathic polymers offer a valuable tool for high-yield production of intact, detergent-free prions that retain in vivo activity. This native prion isolation method provides an avenue for producing relevant prion:lipid targets and potentially other proteins that form multimeric assemblies and fibrils on membranes.


Asunto(s)
Encéfalo/metabolismo , Lípidos/química , Maleatos/química , Nanoestructuras/química , Poliestirenos/química , Proteínas Priónicas/metabolismo , Animales , Cricetinae , Maleatos/síntesis química , Maleatos/metabolismo , Metilaminas/química , Ratones , Fosfolípidos/química , Fosfolípidos/metabolismo , Poliestirenos/síntesis química , Poliestirenos/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/aislamiento & purificación , Compuestos de Sulfhidrilo/química
6.
Expert Rev Proteomics ; 18(7): 483-502, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34351250

RESUMEN

INTRODUCTION: The proteins that decipher nucleic acid- and protein-based information are well known, however, those that read membrane-encoded information remain understudied. Here, we report 70 different human, microbial and viral protein folds that recognize phosphoinositides (PIs), comprising the readers of a vast membrane code. AREAS COVERED: Membrane recognition is best understood for FYVE, PH and PX domains, which exemplify hundreds of PI code readers. Comparable lipid interaction mechanisms may be mediated by kinases, adjacent C1 and C2 domains, trafficking arrestins, GAT and VHS modules, membrane-perturbing annexins, BAR, CHMP, ENTH, HEAT, syntaxin and Tubby helical bundles, multipurpose FERM, EH, MATH, PHD, PDZ, PROPPIN, PTB and SH2 domains, as well as systems that regulate receptors, GTPases and actin filaments, transfer lipids, and assemble bacterial and viral particles. EXPERT OPINION: The elucidation of how membranes are recognized has extended the genetic code to the PI code. Novel discoveries include PIP-stop and MET-stop residues to which phosphates and metabolites are attached to block phosphatidylinositol phosphate (PIP) recognition, memteins as functional membrane protein apparatuses and lipidons as lipid 'codons' recognized by membrane readers. At least 5% of the human proteome senses such membrane signals and allows eukaryotic organelles and pathogens to operate and replicate.


Asunto(s)
Fosfatidilinositoles , Proteínas , Sitios de Unión , Humanos , Unión Proteica , Dominios Proteicos
7.
Molecules ; 26(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34946752

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite extensive research and targeting of the main molecular components of the disease, beta-amyloid (Aß) and tau, there are currently no treatments that alter the progression of the disease. Here, we examine the effects of two specific kinase inhibitors for calcium/calmodulin-dependent protein kinase type 1D (CaMK1D) on Aß-mediated toxicity, using mouse primary cortical neurons. Tau hyperphosphorylation and cell death were used as AD indicators. These specific inhibitors were found to prevent Aß induced tau hyperphosphorylation in culture, but were not able to protect cells from Aß induced toxicity. While inhibitors were able to alter AD pathology in cell culture, they were insufficient to prevent cell death. With further research and development, these inhibitors could contribute to a multi-drug strategy to combat AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Modelos Animales de Enfermedad , Neuronas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Neuronas/metabolismo , Neuronas/patología , Inhibidores de Proteínas Quinasas/química
8.
Blood ; 132(13): 1413-1425, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29891536

RESUMEN

The immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor G6b-B has emerged as a key regulator of platelet homeostasis. However, it remains unclear how it mediates its effects. Tyrosine phosphorylation of ITIM and immunoreceptor tyrosine-based switch motif (ITSM) within the cytoplasmic tail of G6b-B provides a docking site for Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, which are also critical regulators of platelet production and function. In this study, we investigate the physiological consequences of uncoupling G6b-B from Shp1 and Shp2. To address this, we generated a transgenic mouse model expressing a mutant form of G6b-B in which tyrosine residues 212 and 238 within ITIM and ITSM were mutated to phenylalanine. Mice homozygous for the mutation (G6b-B diY/F) were macrothrombocytopenic, as a result of the reduction in platelet production, and had large clusters of megakaryocytes and myelofibrosis at sites of hematopoiesis, similar to those observed in G6b-deficient mice and patients. Platelets from G6b-B diY/F mice were hyporesponsive to collagen, as a result of the significant reduction in the expression of the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor complex GPVI-FcR γ-chain, as well as thrombin, which could be partially rescued by costimulating the platelets with adenosine diphosphate. In contrast, platelets from G6b-B diY/F, G6b KO, and megakaryocyte-specific Shp2 KO mice were hyperresponsive to antibody-mediated cross-linking of the hemi-ITAM-containing podoplanin receptor CLEC-2, suggesting that G6b-B inhibits CLEC-2-mediated platelet activation through Shp2. Findings from this study demonstrate that G6b-B must engage with Shp1 and Shp2 to mediate its regulatory effects on platelet homeostasis.


Asunto(s)
Plaquetas/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Inmunológicos/metabolismo , Trombocitopenia/metabolismo , Animales , Sitios de Unión , Plaquetas/metabolismo , Homeostasis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Moleculares , Fosforilación , Mutación Puntual , Mapas de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 6/química , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Transducción de Señal , Trombocitopenia/genética , Trombocitopenia/patología , Dominios Homologos src
9.
Biochem Cell Biol ; 97(3): 257-264, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30308128

RESUMEN

FYVE domains are highly conserved protein modules that typically bind phosphatidylinositol 3-phosphate (PI3P) on the surface of early endosomes. Along with pleckstrin homology (PH) and phox homology (PX) domains, FYVE domains are the principal readers of the phosphoinositide (PI) code that mediate specific recognition of eukaryotic organelles. Of all the human FYVE domain containing proteins, those within the faciogenital dysplasia (Fgd) subfamily are particularly divergent and couple with GTPases to exert unique cellular functions. The subcellular distributions and functions of these evolutionarily conserved signal transducers, which also include Dbl homology (DH) and two PH domains, are discussed here to better understand the biological range of processes that such multidomain proteins engage in. Determinants of their various functions include specific multidomain architectures, posttranslational modifications including PIP stops that have been discovered in sorting nexins, PI recognition motifs, and phospholipid-binding surfaces as defined by the Membrane Optimal Docking Area (MODA) program. How these orchestrate Fgd function remains unclear but has implications for developmental diseases including Aarskog-Scott syndrome, which is also known as faciogenital dysplasia, and forms of cancer that are associated with mutations and amplifications of Fgd genes.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Conformación Proteica
10.
Infect Immun ; 86(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30201701

RESUMEN

Mutations in σE-regulated lipoproteins have previously been shown to impact bacterial viability under conditions of stress and during in vivo infection. YraP is conserved across a number of Gram-negative pathogens, including Neisseria meningitidis, where the homolog is a component of the Bexsero meningococcal group B vaccine. Investigations using laboratory-adapted Escherichia coli K-12 have shown that yraP mutants have elevated sensitivity to a range of compounds, including detergents and normally ineffective antibiotics. In this study, we investigate the role of the outer membrane lipoprotein YraP in the pathogenesis of Salmonella enterica serovar Typhimurium. We show that mutations in S Typhimurium yraP result in a defective outer membrane barrier with elevated sensitivity to a range of compounds. This defect is associated with attenuated virulence in an oral infection model and during the early stages of systemic infection. We show that this attenuation is not a result of defects in lipopolysaccharide and O-antigen synthesis, changes in outer membrane protein levels, or the ability to adhere to and invade eukaryotic cell lines in vitro.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Salmonella typhimurium/patogenicidad , Factores de Virulencia/metabolismo , Animales , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/microbiología , Humanos , Lipoproteínas/genética , Macrófagos/microbiología , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Mutación , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Virulencia , Factores de Virulencia/genética
11.
Biochim Biophys Acta Biomembr ; 1860(2): 257-263, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29056560

RESUMEN

Discovering how membrane proteins recognize signals and passage molecules remains challenging. Life depends on compartmentalizing these processes into dynamic lipid bilayers that are technically difficult to work with. Several polymers have proven adept at separating the responsible machines intact for detailed analysis of their structures and interactions. Styrene maleic acid (SMA) co-polymers efficiently solubilize membranes into native nanodiscs and, unlike amphipols and membrane scaffold proteins, require no potentially destabilizing detergents. Here we review progress with the SMA lipid particle (SMALP) system and its impacts including three dimensional structures and biochemical functions of peripheral and transmembrane proteins. Polymers systems are emerging to tackle the remaining challenges for wider use and future applications including in membrane proteomics, structural biology of transient or unstable states, and discovery of ligand and drug-like molecules specific for native lipid-bound states.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Maleatos/química , Nanoestructuras/química , Poliestirenos/química , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Maleatos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Estructura Molecular , Poliestirenos/metabolismo , Conformación Proteica , Solubilidad
12.
J Biol Chem ; 291(17): 9310-21, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26917727

RESUMEN

Dendritic epidermal T cells (DETC) form a skin-resident γδ T cell population that makes key contributions to cutaneous immune stress surveillance, including non-redundant contributions to protection from cutaneous carcinogens. How DETC become uniquely associated with the epidermis was in large part solved by the identification of Skint-1, the prototypic member of a novel B7-related multigene family. Expressed only by thymic epithelial cells and epidermal keratinocytes, Skint-1 drives specifically the development of DETC progenitors, making it the first clear candidate for a selecting ligand for non-MHC/CD1-restricted T cells. However, the molecular mechanisms underpinning Skint-1 activity are unresolved. Here, we provide evidence that DETC selection requires Skint-1 expression on the surface of thymic epithelial cells, and depends upon specific residues on the CDR3-like loop within the membrane-distal variable domain of Skint-1 (Skint-1 DV). Nuclear magnetic resonance of Skint-1 DV revealed a core tertiary structure conserved across the Skint family, but a highly distinct surface charge distribution, possibly explaining its unique function. Crucially, the CDR3-like loop formed an electrostatically distinct surface, featuring key charged and hydrophobic solvent-exposed residues, at the membrane-distal tip of DV. These results provide the first structural insights into the Skint family, identifying a putative receptor binding surface that directly implicates Skint-1 in receptor-ligand interactions crucial for DETC selection.


Asunto(s)
Epidermis/inmunología , Células Epiteliales/inmunología , Inmunoglobulinas/química , Inmunoglobulinas/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Animales , Línea Celular , Humanos , Ratones , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
13.
Mol Microbiol ; 97(4): 646-59, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25943387

RESUMEN

BAM is a conserved molecular machine, the central component of which is BamA. Orthologues of BamA are found in all Gram-negative bacteria, chloroplasts and mitochondria where it is required for the folding and insertion of ß-barrel containing integral outer membrane proteins (OMPs) into the outer membrane. BamA binds unfolded ß-barrel precursors via the five polypeptide transport-associated (POTRA) domains at its N-terminus. The C-terminus of BamA folds into a ß-barrel domain, which tethers BamA to the outer membrane and is involved in OMP insertion. BamA orthologues are found in all Gram-negative bacteria and appear to function in a species-specific manner. Here we investigate the nature of this species-specificity by examining whether chimeric Escherichia coli BamA fusion proteins, carrying either the ß-barrel or POTRA domains from various BamA orthologues, can functionally replace E. coli BamA. We demonstrate that the ß-barrel domains of many BamA orthologues are functionally interchangeable. We show that defects in the orthologous POTRA domains can be rescued by compensatory mutations within the ß-barrel. These data reveal that the POTRA and barrel domains must be precisely aligned to ensure efficient OMP insertion.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Quimera/genética , Quimera/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Bacterias Gramnegativas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad de la Especie
14.
Adv Exp Med Biol ; 922: 29-42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27553233

RESUMEN

Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current capabilities and future potential of NMR for membrane protein structural biology and ligand discovery.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/química , Animales , Membrana Celular/química , Membrana Celular/ultraestructura , Humanos , Marcaje Isotópico/métodos , Espectroscopía de Resonancia Magnética/instrumentación , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Programas Informáticos
15.
J Biol Chem ; 289(34): 23992-4004, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-24993829

RESUMEN

The small GTPase RhoA promotes deregulated signaling upon interaction with lymphoid blast crisis (Lbc), the oncogenic form of A-kinase anchoring protein 13 (AKAP13). The onco-Lbc protein is a hyperactive Rho-specific guanine nucleotide exchange factor (GEF), but its structural mechanism has not been reported despite its involvement in cardiac hypertrophy and cancer causation. The pleckstrin homology (PH) domain of Lbc is located at the C-terminal end of the protein and is shown here to specifically recognize activated RhoA rather than lipids. The isolated dbl homology (DH) domain can function as an independent activator with an enhanced activity. However, the DH domain normally does not act as a solitary Lbc interface with RhoA-GDP. Instead it is negatively controlled by the PH domain. In particular, the DH helical bundle is coupled to the structurally dependent PH domain through a helical linker, which reduces its activity. Together the two domains form a rigid scaffold in solution as evidenced by small angle x-ray scattering and (1)H,(13)C,(15)N-based NMR spectroscopy. The two domains assume a "chair" shape with its back possessing independent GEF activity and the PH domain providing a broad seat for RhoA-GTP docking rather than membrane recognition. This provides structural and dynamical insights into how DH and PH domains work together in solution to support regulated RhoA activity. Mutational analysis supports the bifunctional PH domain mediation of DH-RhoA interactions and explains why the tandem domain is required for controlled GEF signaling.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Secuencia de Aminoácidos , ADN Complementario , Activación Enzimática , Humanos , Antígenos de Histocompatibilidad Menor , Datos de Secuencia Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas Proto-Oncogénicas/genética , Homología de Secuencia de Aminoácido , Proteína de Unión al GTP rhoA/química
16.
Biochem J ; 461(2): 269-78, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24758594

RESUMEN

ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/aislamiento & purificación , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/aislamiento & purificación , Maleatos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/aislamiento & purificación , Proteínas de Neoplasias/aislamiento & purificación , Poliestirenos/química , Proteínas Recombinantes/aislamiento & purificación , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/química , Animales , Clonación Molecular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Humanos , Cinética , Ligandos , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas de Neoplasias/química , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/química
17.
Biochem Cell Biol ; 92(6): 555-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25394204

RESUMEN

The function of a protein is determined by its intrinsic activity in the context of its subcellular distribution. Membranes localize proteins within cellular compartments and govern their specific activities. Discovering such membrane-protein interactions is important for understanding biological mechanisms and could uncover novel sites for therapeutic intervention. We present a method for detecting membrane interactive proteins and their exposed residues that insert into lipid bilayers. Although the development process involved analysis of how C1b, C2, ENTH, FYVE, Gla, pleckstrin homology (PH), and PX domains bind membranes, the resulting membrane optimal docking area (MODA) method yields predictions for a given protein of known three-dimensional structures without referring to canonical membrane-targeting modules. This approach was tested on the Arf1 GTPase, ATF2 acetyltransferase, von Willebrand factor A3 domain, and Neisseria gonorrhoeae MsrB protein and further refined with membrane interactive and non-interactive FAPP1 and PKD1 pleckstrin homology domains, respectively. Furthermore we demonstrate how this tool can be used to discover unprecedented membrane binding functions as illustrated by the Bro1 domain of Alix, which was revealed to recognize lysobisphosphatidic acid (LBPA). Validation of novel membrane-protein interactions relies on other techniques such as nuclear magnetic resonance spectroscopy (NMR), which was used here to map the sites of micelle interaction. Together this indicates that genome-wide identification of known and novel membrane interactive proteins and sites is now feasible and provides a new tool for functional annotation of the proteome.


Asunto(s)
Membrana Celular/química , Proteínas de la Membrana/química , Anotación de Secuencia Molecular/métodos , Análisis de Secuencia de Proteína/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neisseria gonorrhoeae , Estructura Terciaria de Proteína , Proteoma/química , Proteoma/genética , Proteoma/metabolismo
18.
Biochim Biophys Acta Biomembr ; 1866(4): 184305, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408696

RESUMEN

The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.


Asunto(s)
Proteínas Portadoras , Proteínas de Transporte Vesicular , Proteínas Portadoras/química , Proteínas de Transporte Vesicular/metabolismo , Nexinas de Clasificación/metabolismo , Transporte de Proteínas , Proteolípidos/metabolismo
19.
Cell Rep ; 43(8): 114573, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39093701

RESUMEN

Growth differentiation factor 15 (GDF15) is a peptide with utility in obesity, as it decreases appetite and promotes weight loss. Because obesity increases the risk for type 2 diabetes (T2D) and cardiovascular disease, it is imperative to understand the cardiovascular actions of GDF15, especially since elevated GDF15 levels are an established biomarker for heart failure. As weight loss should be encouraged in the early stages of obesity-related prediabetes/T2D, where diabetic cardiomyopathy is often present, we assessed whether treatment with GDF15 influences its pathology. We observed that GDF15 treatment alleviates diastolic dysfunction in mice with T2D independent of weight loss. This cardioprotection was associated with a reduction in cardiac inflammation, which was likely mediated via indirect actions, as direct treatment of adult mouse cardiomyocytes and differentiated THP-1 human macrophages with GDF15 failed to alleviate lipopolysaccharide-induced inflammation. Therapeutic manipulation of GDF15 action may thus have utility for both obesity and diabetic cardiomyopathy.

20.
J Virol ; 86(18): 9606-16, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22740401

RESUMEN

Hepatitis C virus (HCV) causes chronic liver disease, cirrhosis, and primary liver cancer. Despite 130 million people being at risk worldwide, no vaccine exists, and effective therapy is limited by drug resistance, toxicity, and high costs. The tetraspanin CD81 is an essential entry-level receptor required for HCV infection of hepatocytes and represents a critical target for intervention. In this study, we report the first structural characterization of the large extracellular loop of CD81, expressed in mammalian cells and studied in physiological solutions. The HCV E2 glycoprotein recognizes CD81 through a dynamic loop on the helical bundle, which was shown by nuclear magnetic resonance (NMR) spectroscopy to adopt a conformation distinct from that seen in crystals. A novel membrane binding interface was revealed adjacent to the exposed HCV interaction site in the extracellular loop of CD81. The binding pockets for two proposed inhibitors of the CD81-HCV interaction, namely, benzyl salicylate and fexofenadine, were shown to overlap the HCV and membrane interaction sites. Although the dynamic loop region targeted by these compounds presents challenges for structure-based design, the NMR assignments enable realistic screening and validation of ligands. Together, these data provide an improved avenue for developing potent agents that specifically block CD81-HCV interaction and also pave a way for elucidating the recognition mechanisms of diverse tetraspanins.


Asunto(s)
Hepacivirus/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Sitios de Unión , Células HEK293 , Hepacivirus/patogenicidad , Hepatocitos/metabolismo , Hepatocitos/virología , Interacciones Huésped-Patógeno , Humanos , Ligandos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tetraspanina 28/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA