Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(2): 816-830, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38048321

RESUMEN

Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.


Asunto(s)
Empaquetamiento del ADN , Proteínas Intrínsecamente Desordenadas , Mycobacterium , ADN/metabolismo , Histonas , Proteínas Intrínsecamente Desordenadas/metabolismo , Mycobacterium/metabolismo
2.
Microbiol Immunol ; 68(4): 130-147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38294180

RESUMEN

Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.


Asunto(s)
Vacuna BCG , Mycobacterium bovis , Animales , Ratones , Vacuna BCG/genética , Tokio , Mycobacterium bovis/genética , Activación de Linfocitos , Ingeniería Genética , Vacunas Sintéticas
3.
Biochem Biophys Res Commun ; 681: 111-119, 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774568

RESUMEN

The basic, intrinsically disordered regions of eukaryotic histones and their bacterial counterparts are presumed to act as signaling hubs to regulate the compaction of chromosomes or nucleoids and various DNA processes such as gene expression, recombination, and DNA replication. Posttranslational modifications (PTMs) on these regions are pivotal in regulating chromosomal or nucleoid compaction and DNA processes. However, the low sequence complexity and the presence of short lysine-rich repeats in the regions have hindered the accurate determination of types and locations of PTMs using conventional proteomic procedures. We described a limited proteolysis protocol using trypsin to analyze PTMs on mycobacterial DNA-binding protein 1 (MDP1), a nucleoid-associated protein in mycobacterial species that possesses an extended, lysine-rich, intrinsically disordered region in its C-terminal domain. This limited proteolysis approach successfully revealed significant methylation on many lysine residues in the C-terminal domain of MDP1 purified from Mycobacterium tuberculosis, which was lacking in the corresponding region of recombinant MDP1 expressed in Escherichia coli.

4.
BMC Microbiol ; 23(1): 94, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009882

RESUMEN

BACKGROUND: Mycobacterium intracellulare is a major etiological agent of Mycobacterium avium-intracellulare pulmonary disease (MAC-PD). However, the characteristics of the virulence of M. intracellulare and the in vivo chemotherapeutic efficacy remain unclear. In this study, we examined the virulence of nine M. intracellulare strains with different clinical phenotypes and genotypes in C57BL/6 mice. RESULTS: We classified three types of virulence phenotypes (high, intermediate, and low) based on the kinetics of the bacterial load, histological lung inflammation, and neutrophilic infiltration. High virulence strains showed more severe neutrophilic infiltration in the lungs than intermediate and low virulence strains, with 6.27-fold and 11.0-fold differences of the average percentage of neutrophils in bronchoalveolar lavage fluid, respectively. In particular, the high virulence strain M.i.198 showed the highest mortality in mice, which corresponded to the rapid progression of clinical disease. In mice infected with the drug-sensitive high virulence strain M019, clarithromycin-containing chemotherapy showed the highest efficacy. Monotherapy with rifampicin exacerbated lung inflammation with increased lymphocytic and neutrophilic infiltration into the lungs. CONCLUSIONS: The virulence phenotypes of clinical strains of M. intracellulare were diverse, with high virulence strains being associated with neutrophilic infiltration and disease progression in infected mice. These high virulence strains were proposed as a useful subject for in vivo chemotherapeutic experiments.


Asunto(s)
Infección por Mycobacterium avium-intracellulare , Neumonía , Ratones , Animales , Complejo Mycobacterium avium/genética , Infección por Mycobacterium avium-intracellulare/microbiología , Virulencia , Ratones Endogámicos C57BL , Pulmón/microbiología , Inflamación , Gravedad del Paciente
5.
Antimicrob Agents Chemother ; 66(9): e0017122, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35969044

RESUMEN

Tuberculosis remains a public health crisis and a health security threat. There is an urgent need to develop new antituberculosis drugs with novel modes of action to cure drug-resistant tuberculosis and shorten the chemotherapy period by sterilizing tissues infected with dormant bacteria. Lysocin E is an antibiotic that showed antibacterial activity against Staphylococcus aureus by binding to its menaquinone (commonly known as vitamin K2). Unlike S. aureus, menaquinone is essential in both growing and dormant Mycobacterium tuberculosis. This study aims to evaluate the antituberculosis activities of lysocin E and decipher its mode of action. We show that lysocin E has high in vitro activity against both drug-susceptible and drug-resistant Mycobacterium tuberculosis var. tuberculosis and dormant mycobacteria. Lysocin E is likely bound to menaquinone, causing M. tuberculosis membrane disruption, inhibition of oxygen consumption, and ATP synthesis. Thus, we have concluded that the high antituberculosis activity of lysocin E is attributable to its synergistic effects of membrane disruption and respiratory inhibition. The efficacy of lysocin E against intracellular M. tuberculosis in macrophages was lower than its potent activity against M. tuberculosis in culture medium, probably due to its low ability to penetrate cells, but its efficacy in mice was still superior to that of streptomycin. Our findings indicate that lysocin E is a promising lead compound for the development of a new tuberculosis drug that cures drug-resistant and latent tuberculosis in a shorter period.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Péptidos Cíclicos , Adenosina Trifosfato/metabolismo , Animales , Antituberculosos/química , Antituberculosos/farmacología , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Staphylococcus aureus/metabolismo , Estreptomicina/farmacología , Tuberculosis , Vitamina K 2/metabolismo
6.
Microbiology (Reading) ; 168(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748577

RESUMEN

Tuberculosis (TB) is treated by chemotherapy with multiple anti-TB drugs for a long period, spanning 6 months even in a standard course. In perspective, to prevent the emergence of antimicrobial resistance, novel drugs that act synergistically or additively in combination with major anti-TB drugs and, if possible, shorten the duration of TB therapy are needed. However, their combinatorial effect cannot be predicted until the lead identification phase of the drug development. Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a powerful genetic tool that enables high-throughput screening of novel drug targets. The development of anti-TB drugs promises to be accelerated by CRISPRi. This study determined whether CRISPRi could be applicable for predictive screening of the combinatorial effect between major anti-TB drugs and an inhibitor of a novel target. In the checkerboard assay, isoniazid killed Mycobacterium smegmatis synergistically or additively in combinations with rifampicin or ethambutol, respectively. The susceptibility to rifampicin and ethambutol was increased by knockdown of inhA, which encodes a target molecule of isoniazid. Additionally, knockdown of rpoB, which encodes a target molecule of rifampicin, increased the susceptibility to isoniazid and ethambutol, which act synergistically with rifampicin in the checkerboard assay. Moreover, CRISPRi could successfully predict the synergistic action of cyclomarin A, a novel TB drug candidate, with isoniazid or rifampicin. These results demonstrate that CRISPRi is a useful tool not only for drug target exploration but also for screening the combinatorial effects of novel combinations of anti-TB drugs. This study provides a rationale for anti-TB drug development using CRISPRi.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Etambutol/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Rifampin/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Mycobacterium tuberculosis/genética , Pruebas de Sensibilidad Microbiana
7.
BMC Microbiol ; 21(1): 103, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823816

RESUMEN

BACKGROUND: Mycobacterium intracellulare is a representative etiological agent of emerging pulmonary M. avium-intracellulare complex disease in the industrialized countries worldwide. The recent genome sequencing of clinical strains isolated from pulmonary M. avium-intracellulare complex disease has provided insight into the genomic characteristics of pathogenic mycobacteria, especially for M. avium; however, the genomic characteristics of M. intracellulare remain to be elucidated. RESULTS: In this study, we performed comparative genomic analysis of 55 M. intracellulare and related strains such as M. paraintracellulare (MP), M. indicus pranii (MIP) and M. yonogonense. Based on the average nucleotide identity, the clinical M. intracellulare strains were phylogenetically grouped in two clusters: (1) the typical M. intracellulare (TMI) group, including ATCC13950 and virulent M.i.27 and M.i.198 that we previously reported, and (2) the MP-MIP group. The alignment of the genomic regions was mostly preserved between groups. Plasmids were identified between groups and subgroups, including a plasmid common among some strains of the M.i.27 subgroup. Several genomic regions including those encoding factors involved in lipid metabolism (e.g., fadE3, fadE33), transporters (e.g., mce3), and type VII secretion system (genes of ESX-2 system) were shown to be hypermutated in the clinical strains. M. intracellulare was shown to be pan-genomic at the species and subspecies levels. The mce genes were specific to particular subspecies, suggesting that these genes may be helpful in discriminating virulence phenotypes between subspecies. CONCLUSIONS: Our data suggest that genomic diversity among M. intracellulare, M. paraintracellulare, M. indicus pranii and M. yonogonense remains at the subspecies or genovar levels and does not reach the species level. Genetic components such as mce genes revealed by the comparative genomic analysis could be the novel focus for further insight into the mechanism of human pathogenesis for M. intracellulare and related strains.


Asunto(s)
Genoma Bacteriano , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , Filogenia , Genes Bacterianos/genética , Variación Genética , Genoma Bacteriano/genética , Genómica , Humanos , Complejo Mycobacterium avium/clasificación , Complejo Mycobacterium avium/genética , Complejo Mycobacterium avium/patogenicidad , Infección por Mycobacterium avium-intracellulare/microbiología , Plásmidos/genética , Virulencia/genética
8.
Int Immunol ; 31(12): 781-793, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31201418

RESUMEN

Macrophages are major components of tuberculosis (TB) granulomas and are responsible for host defenses against the intracellular pathogen, Mycobacterium tuberculosis. We herein showed the strong expression of hypoxia-inducible factor-1α (HIF-1α) in TB granulomas and more rapid death of HIF-1α-conditional knockout mice than wild-type (WT) mice after M. tuberculosis infection. Although interferon-γ (IFN-γ) is a critical host-protective cytokine against intracellular pathogens, HIF-1-deficient macrophages permitted M. tuberculosis growth even after activation with IFN-γ. These results prompted us to investigate the role of HIF-1α in host defenses against infection. We found that the expression of lactate dehydrogenase-A (LDH-A) was controlled by HIF-1α in M. tuberculosis-infected macrophages IFN-γ independently. LDH-A is an enzyme that converts pyruvate to lactate and we found that the intracellular level of pyruvate in HIF-1α-deficient bone marrow-derived macrophages (BMDMs) was significantly higher than in WT BMDMs. Intracellular bacillus replication was enhanced by an increase in intracellular pyruvate concentrations, which were decreased by LDH-A. Mycobacteria in phagosomes took up exogenous pyruvate more efficiently than glucose, and used it as the feasible carbon source for intracellular growth. These results demonstrate that HIF-1α prevents the hijacking of pyruvate in macrophages, making it a fundamental host-protective mechanism against M. tuberculosis.


Asunto(s)
Glucólisis , Macrófagos/metabolismo , Tuberculosis/metabolismo , Animales , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/metabolismo
9.
Microbiol Immunol ; 63(3-4): 130-138, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30851131

RESUMEN

One-third of the world's humans has latent tuberculosis infection (LTBI), representing a large pool of potentially active TB. Recent LTBI carries a higher risk of disease progression than remote LTBI. Recent studies suggest important roles of antibodies in TB pathology, prompting us to investigate serum antibody profiles in a cohort with LTBI. In this single-center prospective observational study, we analyzed IgG-antibody concentrations against five major Mycobacterium tuberculosis (Mtb) antigens (including 6 kDa early secretory antigenic target (ESAT6), CFP10, and antigen 85A, which are expressed mainly in the growth phase; and mycobacterial DNA-binding protein 1 (MDP1) and alpha-crystallin like protein (Acr), which are expressed in the dormant phases) in individuals with recent (n=13) or remote (n=12) LTBI, no Mtb infection (n=19), or active TB (n=15). Antibody titers against ESAT6 and MDP1 were significantly higher in individuals with recent LTBI than in those with no Mtb infection or remote LTBI. All pairwise antibody titers against these five major antigens were significantly correlated throughout the stages of Mtb infection. Five individuals with recent LTBI had significantly higher antibody titers against ESAT6 (P = 0.03), Ag85A (P = 0.048), Acr (P = 0.057), and MDP1 (P = 0.0001) than in individuals with remote LTBI; they were also outside the normal range (+2 SDs). One of these individuals was diagnosed with active pulmonary TB at 18-month follow-up examination. These findings indicated that concentrations of antibodies against both multiplying and dormant Mtb are higher in recent LTBI and that individuals with markedly higher antibody titers may be appropriate candidates for prophylactic therapy.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Tuberculosis Latente/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/diagnóstico , Aciltransferasas/inmunología , Adulto , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas de Unión al ADN/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Tuberculosis Latente/microbiología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Tuberculosis Pulmonar/microbiología , alfa-Cristalinas/inmunología
10.
Front Immunol ; 15: 1330796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665909

RESUMEN

Introduction: There is no useful method to discriminate between latent tuberculosis infection (LTBI) and active pulmonary tuberculosis (PTB). This study aimed to investigate the potential of cytokine profiles to discriminate between LTBI and active PTB using whole-blood stimulation with Mycobacterium tuberculosis (MTB) antigens, including latency-associated antigens. Materials and methods: Patients with active PTB, household contacts of active PTB patients and community exposure subjects were recruited in Manila, the Philippines. Peripheral blood was collected from the participants and used for whole-blood stimulation (WBS) with either the early secretory antigenic target and the 10-kDa culture filtrate protein (ESAT-6/CFP-10), Rv3879c or latency-associated MTB antigens, including mycobacterial DNA-binding protein 1 (MDP-1), α-crystallin (Acr) and heparin-binding hemagglutinin (HBHA). Multiple cytokine concentrations were analyzed using the Bio-Plex™ multiplex cytokine assay. Results: A total of 78 participants consisting of 15 active PTB patients, 48 household contacts and 15 community exposure subjects were eligible. The MDP-1-specific IFN-γ level in the active PTB group was significantly lower than that in the household contact group (p < 0.001) and the community exposure group (p < 0.001). The Acr-specific TNF-α and IL-10 levels in the active PTB group were significantly higher than those in the household contact (TNF-α; p = 0.001, IL-10; p = 0.001) and community exposure (TNF-α; p < 0.001, IL-10; p = 0.01) groups. However, there was no significant difference in the ESAT-6/CFP-10-specific IFN-γ levels among the groups. Conclusion: The patterns of cytokine profiles induced by latency-associated MTB antigens using WBS have the potential to discriminate between LTBI and active PTB. In particular, combinations of IFN-γ and MDP-1, TNF-α and Acr, and IL-10 and Acr are promising. This study provides the first demonstration of the utility of MDP-1-specific cytokine responses in WBS.


Asunto(s)
Antígenos Bacterianos , Citocinas , Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Humanos , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/sangre , Masculino , Tuberculosis Latente/diagnóstico , Tuberculosis Latente/inmunología , Tuberculosis Latente/sangre , Tuberculosis Latente/microbiología , Femenino , Mycobacterium tuberculosis/inmunología , Filipinas , Adulto , Citocinas/sangre , Persona de Mediana Edad , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Adulto Joven , Proteínas Bacterianas/inmunología
11.
Sci Rep ; 14(1): 9141, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644371

RESUMEN

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


Asunto(s)
Vacuna BCG , Proteínas Bacterianas , Proteínas de Unión al ADN , Interferón gamma , Mycobacterium tuberculosis , Procesamiento Proteico-Postraduccional , Humanos , Interferón gamma/metabolismo , Proteínas Bacterianas/inmunología , Vacuna BCG/inmunología , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mycobacterium tuberculosis/inmunología , Proteínas Recombinantes/inmunología , Oligodesoxirribonucleótidos/farmacología , Tuberculosis/prevención & control , Tuberculosis/inmunología , Islas de CpG , Mycobacterium smegmatis/inmunología , Mycobacterium smegmatis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Femenino
12.
J Biol Chem ; 287(33): 27743-52, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22648414

RESUMEN

Tuberculosis remains one of the most deadly infectious diseases worldwide and is a leading public health problem. Although isoniazid (INH) is a key drug for the treatment of tuberculosis, tolerance to INH necessitates prolonged treatment, which is a concern for effective tuberculosis chemotherapy. INH is a prodrug that is activated by the mycobacterial enzyme, KatG. Here, we show that mycobacterial DNA-binding protein 1 (MDP1), which is a histone-like protein conserved in mycobacteria, negatively regulates katG transcription and leads to phenotypic tolerance to INH in mycobacteria. Mycobacterium smegmatis deficient for MDP1 exhibited increased expression of KatG and showed enhanced INH activation compared with the wild-type strain. Expression of MDP1 was increased in the stationary phase and conferred growth phase-dependent tolerance to INH in M. smegmatis. Regulation of KatG expression is conserved between M. smegmatis and Mycobacterium tuberculosis complex. Artificial reduction of MDP1 in Mycobacterium bovis BCG was shown to lead to increased KatG expression and susceptibility to INH. These data suggest a mechanism by which phenotypic tolerance to INH is acquired in mycobacteria.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Isoniazida/farmacología , Mycobacterium/fisiología , Profármacos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Bacteriana/fisiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología
13.
Microbiol Immunol ; 57(1): 30-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23157580

RESUMEN

Development of accurate methods for predicting progression of tuberculosis (TB) from the latent state is recognized as vitally important in controlling TB, because a majority of cases develop from latent infections. Past TB that has never been treated has a higher risk of progressing than does latent Mycobacterium tuberculosis infection in patients who have previously received treatment. Antibody responses against 23 kinds of M. tuberculosis proteins in individuals with past TB who had not been medicated were evaluated. These individuals had significantly higher concentrations of antibodies against Antigen 85A and mycobacterial DNA-binding protein 1 (MDP1) than did those with active TB and uninfected controls. In addition, immunohistochemistry revealed colocalization of tubercle bacilli, antigen 85 and MDP1 inside tuberculous granuloma lesions in an asymptomatic subject, showing that M. tuberculosis in lesions expresses both antigen 85 and MDP1. Our study suggests the potential usefulness of measuring antibody responses to antigen 85A and MDP1 for assessing the risk of TB progression.


Asunto(s)
Aciltransferasas/inmunología , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas de Unión al ADN/inmunología , Inmunoglobulina G/sangre , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Adulto , Anciano , Enfermedades Asintomáticas , Femenino , Humanos , Inmunohistoquímica , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Masculino , Persona de Mediana Edad , Pronóstico , Tuberculosis/diagnóstico , Tuberculosis/patología , Adulto Joven
14.
Immun Ageing ; 10(1): 25, 2013 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-23799936

RESUMEN

BACKGROUND: Mycobacterium bovis bacillus Calmette Guérin (BCG) vaccine, which has been inoculated to more than one billion people world-wide, has significant effect in preventing tuberculous meningitis and miliary tuberculosis (TB) in neonate and early childhood. However, BCG fails to adequately protect against pulmonary TB and reactivation of latent infections in adults. To overcome this problem, adequate booster is urgently desired in adult who received prior BCG vaccination, and appropriate animal models that substitute human cases would be highly valuable for further experimentation. FINDINGS: The booster effect of the synthesized CpG oligomer (Oligo-B) on aged mice which had been primarily vaccinated with BCG at the age of 4-week old. The specific Th1 type reaction, production of interferon-γ, in response to TB antigens, purified protein derivatives (PPD) and protection against challenge with Mycobacterium tuberculosis (MTB) H37Rv decreased with increasing age and were not observed in 89-week old mice. In order to rejuvenate the Th1 type response against PPD and protection activity against MTB infection, Oligo-B, which is known to augment Th1 responses, was administered as a booster to 81-90-week old mice (late 50's in human equivalent) vaccinated with BCG at 4-week old. The boosting with Oligo-B increased the number of CD4+ CD44high CD62Lhigh, central memory type T cell. Furthermore, the Oligo-B boosting rejuvenated the ability of mice to protect against infection with MTB H37Rv. CONCLUSIONS: Th1-adjuvant CpG oligo DNA, such as Oligo-B, may be a promising booster when coupled with BCG priming.

15.
Sci Rep ; 13(1): 14157, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644087

RESUMEN

Survival of the live attenuated Bacillus Calmette-Guérin (BCG) vaccine amidst harsh host environments is key for BCG effectiveness as it allows continuous immune response induction and protection against tuberculosis. Mycobacterial DNA binding protein 1 (MDP1), a nucleoid associated protein, is essential in BCG. However, there is limited knowledge on the extent of MDP1 gene regulation and how this influences BCG survival. Here, we demonstrate that MDP1 conditional knockdown (cKD) BCG grows slower than vector control in vitro, and dies faster upon exposure to antibiotics (bedaquiline) and oxidative stress (H2O2 and menadione). MDP1-cKD BCG also exhibited low infectivity and survival in THP-1 macrophages and mice indicating possible susceptibility to host mediated stress. Consequently, low in vivo survival resulted in reduced cytokine (IFN-gamma and TNF-alpha) production by splenocytes. Temporal transcriptome profiling showed more upregulated (81-240) than downregulated (5-175) genes in response to MDP1 suppression. Pathway analysis showed suppression of biosynthetic pathways that coincide with low in vitro growth. Notable was the deferential expression of genes involved in stress response (sigI), maintenance of DNA integrity (mutT1), REDOX balance (WhiB3), and host interactions (PE/PE_PGRS). Thus, this study shows MDP1's importance in BCG survival and highlights MDP1-dependent gene regulation suggesting its role in growth and stress adaptation.


Asunto(s)
Vacuna BCG , Insuficiencia Renal Crónica , Animales , Ratones , Peróxido de Hidrógeno , Proteínas de Unión al ADN/genética , Aclimatación
16.
Sci Rep ; 13(1): 12685, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542102

RESUMEN

Accurate point-of-care testing (POCT) is critical for managing tuberculosis (TB). However, current antibody-based diagnosis shows low specificity and sensitivity. To find proper antigen candidates for TB diagnosis by antibodies, we assessed IgGs responsiveness to Mycobacterium tuberculosis proteins in pulmonary TB (PTB) patients. We employed major secreted proteins, such as Rv1860, Ag85C, PstS1, Rv2878c, Ag85B, and Rv1926c that were directly purified from M. tuberculosis. In the first screening, we found that IgG levels were significantly elevated in PTB patients only against Rv1860, PstS1, and Ag85B among tested antigens. However, recombinant PstS1 and Ag85B from Escherichia coli (E. coli) couldn't distinguish PTB patients and healthy controls (HC). Recombinant Rv1860 was not checked due to its little expression. Then, the 59 confirmed PTB patients from Soetomo General Academic Hospital, Surabaya, Indonesia, and 102 HC were tested to Rv1860 and Ag85B only due to the low yield of the PstS1 from M. tuberculosis. The ROC analysis using native Ag85B and Rv1860 showed an acceptable area under curve for diagnosis, which is 0.812 (95% CI 0.734-0.890, p < 0.0001) and 0.821 (95% CI 0.752-0.890, p < 0.0001). This study indicates that taking consideration of native protein structure is key in developing TB's POCT by antibody-based diagnosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Proteínas Bacterianas/química , Antígenos Bacterianos , Escherichia coli/metabolismo , Tuberculosis Pulmonar/diagnóstico , Tuberculosis/diagnóstico , Anticuerpos Antibacterianos
18.
Microbiol Spectr ; 10(2): e0245421, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35293805

RESUMEN

Pathogenic intracellular mycobacteria, such as Mycobacterium tuberculosis and Mycobacterium avium, which cause lung diseases, can grow in macrophages. Extracellular mycobacteria have been reported in the lungs, blood, and sputum of patients, indicating the involvement of these pathogens in disease progression. Erythrocytes are involved in the symptoms associated with pulmonary mycobacterial diseases, such as bloody sputum and hemoptysis; however, little attention has been paid to the role of erythrocytes in mycobacterial diseases. Herein, we found that Mycobacterium avium subsp. hominissuis (MAH) and Mycobacterium intracellulare colocalized with erythrocytes at the sites of lung infection, inside capillaries and necrotic areas of granulomas, using histopathological examinations. Electron microscopy showed that MAH adhered and entered human erythrocytes when they were cocultured in vitro. MAH adhered to erythrocytes through complement receptor 1 and cell-surface sialo-glycoproteins. Importantly, MAH grew vigorously without causing any pronounced damage to erythrocytes. This erythrocyte-mediated enhancement of MAH growth occurred extracellularly depending on its direct attachment to erythrocytes. In contrast, MAH failed to multiply inside erythrocytes. Similarly, erythrocytes augmented the growth of other pathogenic mycobacteria, such as M. intracellulare and M. tuberculosis. THP-1 cell-derived human macrophages preferentially phagocytosed erythrocytes that were attached to mycobacteria (compared to bacteria alone), suggesting that erythrocyte-attached mycobacteria are an efficient infectious source for macrophages. Our findings provide new insights into the pathogenesis of mycobacterial diseases and offer an alternative and useful strategy for treating mycobacterial disease. IMPORTANCE Pathogenic mycobacteria, such as Mycobacterium tuberculosis, Mycobacterium avium subsp. hominissuis (MAH), and Mycobacterium intracellulare, cause pulmonary infections as intracellular parasites of lung macrophages and epithelial cells. Here, using histopathological examinations we found that MAH and M. intracellulare colocalized with erythrocytes in lung infection sites. Subsequent studies demonstrated that direct interaction with erythrocytes enhances the extracellular proliferation of mycobacteria based on the following results: 1. MAH adhered and invaded human erythrocytes upon coculture in vitro; 2. MAH adhered to erythrocytes through complement receptor 1 and cell-surface sialo-glycoproteins; 3. MAH rapidly proliferated when directly attached to erythrocytes but not within them; 4. other mycobacteria, such as M. intracellulare and M. tuberculosis, also proliferated in the same way as MAH. The finding that pathogenic mycobacteria grow extracellularly in an erythrocyte-dependent manner is of considerable clinical importance for understanding disease progression and latent infection.


Asunto(s)
Infección por Mycobacterium avium-intracellulare , Mycobacterium tuberculosis , Tuberculosis , Progresión de la Enfermedad , Eritrocitos , Glicoproteínas , Humanos , Mycobacterium , Complejo Mycobacterium avium , Receptores de Complemento , Tuberculosis/microbiología
19.
Sci Rep ; 12(1): 4310, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279668

RESUMEN

Tuberculosis (TB) is fatal in elephants, hence protecting elephants from TB is key not only in the conservation of this endangered animal, but also to prevent TB transmission from elephants to humans. Most human TB cases arise from long-term asymptomatic infections. Significant diagnostic challenges remain in the detection of both infection and disease development from latency in elephants due to their huge bodies. In this study, we assessed cryopreserved sera collected for over 16 years, from the first Japanese treatment case of elephant TB. Semi-quantification of IgG levels to 11 proteins showed high detection levels of 3 proteins, namely ESAT6/CFP10, MPB83 and Ag85B. The level of IgG specific to these 3 antigens was measured longitudinally, revealing high and stable ESAT6/CFP10 IgG levels regardless of onset or treatment. Ag85B-specifc IgG levels were largely responsive to onset or treatment, while those of MPB83 showed intermediate responses. These results suggest that ESAT6/CFP10 is immunodominant in both asymptomatic and symptomatic phases, making it useful in the detection of infection. On the other hand, Ag85B has the potential to be a marker for the prediction of disease onset and in the evaluation of treatment effectiveness in elephants.


Asunto(s)
Elefantes , Mycobacterium tuberculosis , Tuberculosis , Animales , Antígenos Bacterianos , Proteínas Bacterianas , Elefantes/microbiología , Inmunoglobulina G , Tuberculosis/diagnóstico , Tuberculosis/veterinaria
20.
PLoS Pathog ; 5(10): e1000643, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19876387

RESUMEN

In spite of the importance of hyaluronan in host protection against infectious organisms in the alveolar spaces, its role in mycobacterial infection is unknown. In a previous study, we found that mycobacteria interact with hyaluronan on lung epithelial cells. Here, we have analyzed the role of hyaluronan after mycobacterial infection was established and found that pathogenic mycobacteria can grow by utilizing hyaluronan as a carbon source. Both mouse and human possess 3 kinds of hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3. Utilizing individual HAS-transfected cells, we show that HAS1 and HAS3 but not HAS2 support growth of mycobacteria. We found that the major hyaluronan synthase expressed in the lung is HAS1, and that its expression was increased after infection with Mycobacterium tuberculosis. Histochemical analysis demonstrated that hyaluronan profoundly accumulated in the granulomatous legion of the lungs in M. tuberculosis-infected mice and rhesus monkeys that died from tuberculosis. We detected hyaluronidase activity in the lysate of mycobacteria and showed that it was critical for hyaluronan-dependent extracellular growth. Finally, we showed that L-Ascorbic acid 6-hexadecanoate, a hyaluronidase inhibitor, suppressed growth of mycobacteria in vivo. Taken together, our data show that pathogenic mycobacteria exploit an intrinsic host-protective molecule, hyaluronan, to grow in the respiratory tract and demonstrate the potential usefulness of hyaluronidase inhibitors against mycobacterial diseases.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Ácido Hialurónico/metabolismo , Mycobacterium tuberculosis/fisiología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Recuento de Colonia Microbiana , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Glicosaminoglicanos/farmacología , Histocitoquímica , Humanos , Hialuronano Sintasas , Ácido Hialurónico/farmacología , Pulmón/química , Pulmón/metabolismo , Pulmón/microbiología , Macaca mulatta , Masculino , Ratones , Mycobacterium bovis/fisiología , Mycobacterium tuberculosis/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA