RESUMEN
Cellular senescence is a state of stable cell cycle arrest that can negatively affect the regenerative capacities of tissues and can contribute to inflammation and the progression of various aging-related diseases. Advances in the in vivo detection of cellular senescence are still crucial to monitor the action of senolytic drugs and to assess the early onset or accumulation of senescent cells. Here, we describe a naphthalimide-styrene-based probe (HeckGal) for the detection of cellular senescence both in vitro and in vivo. HeckGal is hydrolyzed by the increased lysosomal ß-galactosidase activity of senescent cells, resulting in fluorescence emission. The probe was validated in vitro using normal human fibroblasts and various cancer cell lines undergoing senescence induced by different stress stimuli. Remarkably, HeckGal was also validated in vivo in an orthotopic breast cancer mouse model treated with senescence-inducing chemotherapy and in a renal fibrosis mouse model. In all cases, HeckGal allowed the unambiguous detection of senescence in vitro as well as in tissues and tumors in vivo. This work is expected to provide a potential technology for senescence detection in aged or damaged tissues.
Asunto(s)
Naftalimidas , Estireno , Animales , Senescencia Celular , Fibroblastos , Ratones , FotonesRESUMEN
BACKGROUND: There are phase 3 clinical trials underway evaluating anti-PD-L1 antibodies as adjuvant (postoperative) monotherapies for resectable renal cell carcinoma (RCC) and triple-negative breast cancer (TNBC); in combination with antiangiogenic VEGF/VEGFR2 inhibitors (e.g., bevacizumab and sunitinib) for metastatic RCC; and in combination with chemotherapeutics as neoadjuvant (preoperative) therapies for resectable TNBC. METHODS: This study investigated these and similar clinically relevant drug combinations in highly translational preclinical models of micro- and macro-metastatic disease that spontaneously develop after surgical resection of primary kidney or breast tumours derived from orthotopic implantation of murine cancer cell lines (RENCAluc or EMT-6/CDDP, respectively). RESULTS: In the RENCAluc model, adjuvant sunitinib plus anti-PD-L1 improved overall survival compared to either drug alone, while the same combination was ineffective as early therapy for unresected primary tumours or late-stage therapy for advanced metastatic disease. In the EMT-6/CDDP model, anti-PD-L1 was highly effective as an adjuvant monotherapy, while its combination with paclitaxel chemotherapy (with or without anti-VEGF) was most effective as a neoadjuvant therapy. CONCLUSIONS: Our preclinical data suggest that anti-PD-L1 plus sunitinib may warrant further investigation as an adjuvant therapy for RCC, while anti-PD-L1 may be improved by combining with chemotherapy in the neoadjuvant but not the adjuvant setting of treating breast cancer.
Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Neoplasias Renales/terapia , Neoplasias Mamarias Animales/terapia , Neovascularización Patológica/terapia , Animales , Antígeno B7-H1/inmunología , Bevacizumab/administración & dosificación , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia/métodos , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Neoplasias Mamarias Animales/inmunología , Neoplasias Mamarias Animales/patología , Neoplasias Mamarias Animales/cirugía , Ratones , Terapia Neoadyuvante/métodos , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Paclitaxel/administración & dosificación , Sunitinib/administración & dosificaciónRESUMEN
The oncostatin M (OSM) receptor (OSMR) shows frequent gene copy number gains and overexpression in cervical squamous cell carcinomas (SCCs), associated with adverse clinical outcomes. In SCC cells that overexpress OSMR, the major ligand OSM induces multiple pro-malignant effects, including invasion, secretion of angiogenic factors, and metastasis. Here, we demonstrate, for the first time, that OSMR overexpression in SCC cells activates cell-autonomous feed-forward signalling, via further expression of OSMR and OSM and sustained STAT3 activation, despite expression of the negative regulator suppressor of cytokine signalling 3 (SOCS3). The pro-malignant effects associated with OSMR overexpression are critically mediated by JAK-STAT3 activation, which is induced by exogenous OSM and also by autocrine OSM-OSMR interactions. Importantly, specific inhibition of OSM-OSMR interactions by neutralizing antibodies significantly inhibits STAT3 activation and feed-forward signalling, leading to reduced invasion, angiogenesis, and metastasis. Our findings are supported by data from 1254 clinical SCC samples, in which OSMR levels correlated with multiple cognate genes, including OSM, STAT3, and downstream targets. These data strongly support the development of OSM-OSMR-blocking antibodies as biologically targeted therapies against SCCs of the cervix and other anatomical sites. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Subunidad beta del Receptor de Oncostatina M/antagonistas & inhibidores , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Comunicación Autocrina , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Endogámicos NOD , Ratones SCID , Oncostatina M/genética , Oncostatina M/metabolismo , Subunidad beta del Receptor de Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/inmunología , Subunidad beta del Receptor de Oncostatina M/metabolismo , Fosforilación , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Regulación hacia Arriba , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
With the aim of producing a 3D representation of tumors, imaging and molecular annotation of xenografts and tumors (IMAXT) uses a large variety of modalities in order to acquire tumor samples and produce a map of every cell in the tumor and its host environment. With the large volume and variety of data produced in the project, we developed automatic data workflows and analysis pipelines. We introduce a research methodology where scientists connect to a cloud environment to perform analysis close to where data are located, instead of bringing data to their local computers. Here, we present the data and analysis infrastructure, discuss the unique computational challenges and describe the analysis chains developed and deployed to generate molecularly annotated tumor models. Registration is achieved by use of a novel technique involving spherical fiducial marks that are visible in all imaging modalities used within IMAXT. The automatic pipelines are highly optimized and allow to obtain processed datasets several times quicker than current solutions narrowing the gap between data acquisition and scientific exploitation.
RESUMEN
We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.
Asunto(s)
Neoplasias , Humanos , Ratones , Animales , Canales Iónicos/genética , Proteínas de la Membrana/genéticaRESUMEN
Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence-associated lysosomal ß-galactosidase (SA-ß-gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose-encapsulated nanoparticles within these cells. Here, we show that galacto-conjugation of the BCL-2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav-Gal), that can be preferentially activated by SA-ß-gal activity in a wide range of cell types. Nav-Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav-Gal enhances the cytotoxicity of standard senescence-inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav-Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto-conjugation reduces Navitoclax-induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.
Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Plaquetas/efectos de los fármacos , Galactosa/farmacología , Profármacos/farmacología , Sulfonamidas/farmacología , Compuestos de Anilina/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Galactosa/química , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Profármacos/síntesis química , Profármacos/química , Sulfonamidas/química , Células Tumorales CultivadasRESUMEN
Organismal ageing is a complex process driving progressive impairment of functionality and regenerative potential of tissues. Cellular senescence is a state of stable cell cycle arrest occurring in response to damage and stress and is considered a hallmark of ageing. Senescent cells accumulate in multiple organs during ageing, contribute to tissue dysfunction and give rise to pathological manifestations. Senescence is therefore a defining feature of a variety of human age-related disorders, including cancer, and targeted elimination of these cells has recently emerged as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration. In addition, in vivo identification of senescent cells has significant potential for early diagnosis of multiple pathologies. Here, we review existing senolytics, small molecules and drug delivery tools used in preclinical therapeutic strategies involving cellular senescence, as well as probes to trace senescent cells. We also review the clinical research landscape in senescence and discuss how identifying and targeting cellular senescence might positively affect pathological and ageing processes.
Asunto(s)
Envejecimiento/fisiología , Senescencia Celular/fisiología , Investigación Biomédica Traslacional/métodos , Animales , HumanosRESUMEN
One of the main consequences of inhibition of neovessel growth and vessel pruning produced by angiogenesis inhibitors is increased intratumor hypoxia. Growing evidence indicates that tumor cells escape from this hypoxic environment to better nourished locations, presenting hypoxia as a positive stimulus for invasion. In particular, anti-VEGF/R therapies produce hypoxia-induced invasion and metastasis in a spontaneous mouse model of pancreatic neuroendocrine cancer (PanNET), RIP1-Tag2. Here, a novel vascular-targeting agent targeting semaphorin 4D (Sema4D) demonstrated impaired tumor growth and extended survival in the RIP1-Tag2 model. Surprisingly, although there was no induction of intratumor hypoxia by anti-Sema4D therapy, the increase in local invasion and distant metastases was comparable with the one produced by VEGFR inhibition. Mechanistically, the antitumor effect was due to an alteration in vascular function by modification of pericyte coverage involving platelet-derived growth factor B. On the other hand, the aggressive phenotype involved a macrophage-derived Sema4D signaling engagement, which induced their recruitment to the tumor invasive fronts and secretion of stromal cell-derived factor 1 (SDF1) that triggered tumor cell invasive behavior via CXCR4. A comprehensive clinical validation of the targets in different stages of PanNETs demonstrated the implication of both Sema4D and CXCR4 in tumor progression. Taken together, we demonstrate beneficial antitumor and prosurvival effects of anti-Sema4D antibody but also unravel a novel mechanism of tumor aggressivity. This mechanism implicates recruitment of Sema4D-positive macrophages to invasive fronts and their secretion of proinvasive molecules that ultimately induce local tumor invasion and distant metastasis in PanNETs. SIGNIFICANCE: An anti-semaphorin-4D vascular targeting agent demonstrates antitumor and prosurvival effects but also unravels a novel promalignant effect involving macrophage-derived SDF1 that promotes tumor invasion and metastasis, both in animal models and patients.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5328/F1.large.jpg.See related commentary by Tamagnone and Franzolin, p. 5146.
Asunto(s)
Neoplasias , Semaforinas , Animales , Antígenos CD , Humanos , Ratones , Transducción de SeñalRESUMEN
Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cycle arrest and an inflammatory response called senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behavior of neighboring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors and small extracellular vesicles (sEVs) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEVs, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. We find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify interferon-induced transmembrane protein 3 (IFITM3) as being partially responsible for transmitting senescence to normal cells. We find that sEVs contribute to paracrine senescence.
Asunto(s)
Microambiente Celular , Vesículas Extracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Comunicación Paracrina , Proteínas de Unión al ARN/metabolismo , Femenino , Células HEK293 , Humanos , Células MCF-7 , MasculinoRESUMEN
Senescent cells accumulate in multiple aging-associated diseases, and eliminating these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high lysosomal ß-galactosidase activity of senescent cells to design a drug delivery system based on the encapsulation of drugs with galacto-oligosaccharides. We show that gal-encapsulated fluorophores are preferentially released within senescent cells in mice. In a model of chemotherapy-induced senescence, gal-encapsulated cytotoxic drugs target senescent tumor cells and improve tumor xenograft regression in combination with palbociclib. Moreover, in a model of pulmonary fibrosis in mice, gal-encapsulated cytotoxics target senescent cells, reducing collagen deposition and restoring pulmonary function. Finally, gal-encapsulation reduces the toxic side effects of the cytotoxic drugs. Drug delivery into senescent cells opens new diagnostic and therapeutic applications for senescence-associated disorders.
Asunto(s)
Senescencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Galactosa/metabolismo , Lisosomas/enzimología , Oligosacáridos/metabolismo , beta-Galactosidasa/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Citotoxinas/administración & dosificación , Citotoxinas/farmacología , Modelos Animales de Enfermedad , Composición de Medicamentos , Colorantes Fluorescentes/metabolismo , Xenoinjertos , Ratones , Trasplante de Neoplasias , Neoplasias/tratamiento farmacológico , Piperazinas/administración & dosificación , Piperazinas/farmacología , Piridinas/administración & dosificación , Piridinas/farmacología , Coloración y EtiquetadoRESUMEN
Several approaches are being evaluated to improve the historically limited value of studying transplanted primary tumors derived by injection of cells from established cell lines for predicting subsequent cancer therapy outcomes in patients and clinical trials. These approaches include use of genetically engineered mouse models (GEMMs) of spontaneous tumors, or patient tumor tissue derived xenografts (PDXs). Almost all such therapy studies utilizing such models involve treatment of established primary tumors. An alternative approach we have developed involves transplanted human tumor xenografts derived from established cell lines to treat mice with overt visceral metastases after primary tumor resection. The rationale is to mimic the more challenging circumstance of treating patients with late stage metastatic disease. These metastatic models entail prior in vivo selection of heritable, phenotypically stable variants with increased aggressiveness for spontaneous metastasis; they were derived by orthotopic injection of tumor cells followed by primary tumor resection and serial selection of distant spontaneous metastases, from which variant cell lines having a more aggressive heritable metastatic phenotype were established. We attempted to adopt this strategy for breast cancer PDXs. We studied five breast cancer PDXs, with the emphasis on two, called HCI-001 and HCI-002, both derived from triple negative breast cancer patients. However significant technical obstacles were encountered. These include the inherent slow growth rates of PDXs, the rarity of overt spontaneous metastases (detected in only 3 of 144 mice), very high rates of tumor regrowths at the primary tumor resection site, the failure of the few human PDX metastases isolated to manifest a more aggressive metastatic phenotype upon re-transplantation into new hosts, and the formation of metastases which were derived from de novo mouse thymomas arising in aged SCID mice that we used for the experiments. We discuss several possible strategies that may be employed to overcome these limitations. Uncovering the basis of the failure to detect a high rate of overt spontaneous distant metastases having a heritable phenotype in PDX models may reveal new insights into the biology and treatment of advanced metastatic disease.
Asunto(s)
Modelos Animales de Enfermedad , Xenoinjertos , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones SCID , FenotipoRESUMEN
Phase III clinical trials evaluating bevacizumab (an antibody to the angiogenic ligand, VEGF-A) in breast cancer have found improved responses in the presurgical neoadjuvant setting but no benefits in the postsurgical adjuvant setting. The objective of this study was to evaluate alternative antiangiogenic therapies, which target multiple VEGF family members or differentially modulate the Angiopoietin/Tie2 pathway, in a mouse model of resectable triple-negative breast cancer (TNBC). Neoadjuvant therapy experiments involved treating established orthotopic xenografts of an aggressive metastatic variant of the MDA-MB-231 human TNBC cell line, LM2-4. Adjuvant therapies were given after primary tumor resections to treat postsurgical regrowths and distant metastases. Aflibercept ('VEGF Trap', which neutralizes VEGF-A, VEGF-B and PlGF) showed greater efficacy than nesvacumab (an anti-Ang2 antibody) as an add-on to neoadjuvant/adjuvant chemotherapy. Concurrent inhibition of Ang1 and Ang2 signaling (through an antagonistic anti-Tie2 antibody) was not more efficacious than selective Ang2 inhibition. In contrast, short-term perioperative BowAng1 (a recombinant Ang1 variant) improved the efficacy of adjuvant chemotherapy. In conclusion, concurrent VEGF pathway inhibition is more likely than Ang/Tie2 pathway inhibition (e.g., anti-Ang2, anti-Ang2/Ang1, anti-Tie2) to improve neoadjuvant/adjuvant chemotherapies for TNBC. Short-term perioperative Ang1 supplementation may also have therapeutic potential in conjunction with adjuvant chemotherapy for TNBC.
Asunto(s)
Angiopoyetina 1/farmacología , Terapia Neoadyuvante , Neoplasias Experimentales/tratamiento farmacológico , Proteínas Recombinantes de Fusión/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Femenino , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Receptores de Factores de Crecimiento Endotelial Vascular , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Antiangiogenic tyrosine kinase inhibitors (TKI) that target VEGF receptor-2 (VEGFR2) have not been effective as adjuvant treatments for micrometastatic disease in phase III clinical trials. Angiopoietin-2 (Ang2) is a proangiogenic and proinflammatory vascular destabilizer that cooperates with VEGF. The purpose of this study was to test whether CVX-060 (an Ang2-specific CovX-body) can be combined with VEGFR2-targeting TKIs (sunitinib or regorafenib) to successfully treat postsurgical metastatic disease in multiple orthotopically implanted human tumor xenograft and syngeneic murine tumor models. In the MDA-MB-231.LM2-4 human breast cancer model, adjuvant sunitinib was ineffective, whereas adjuvant CVX-060 delayed the progression of pulmonary or distant lymphatic metastases; however, overall survival was only improved with the adjuvant use of a VEGF-A/Ang2-bispecific CovX-body (CVX-241) but not when CVX-060 is combined with sunitinib. Adjuvant CVX-241 also showed promise in the EMT-6/CDDP murine breast cancer model, with or without an immune checkpoint inhibitor (anti-PD-L1). In the RENCA model of mouse renal cancer, however, combining CVX-060 with sunitinib in the adjuvant setting was superior to CVX-241 as treatment for postsurgical lung metastases. In the HCT116 and HT29 xenograft models of colorectal cancer, both CVX-060 and regorafenib inhibited liver metastases. Overall, our preclinical findings suggest differential strategies by which Ang2 blockers can be successfully combined with VEGF pathway targeting in the adjuvant setting to treat micrometastatic disease-particularly, in combination with VEGF-A blockers (but not VEGFR2 TKIs) in resected breast cancer; in combination with VEGFR2 TKIs in resected kidney cancer; and as single agents or with VEGFR2 TKIs in resected colorectal cancer. Cancer Res; 76(23); 6988-7000. ©2016 AACR.
Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Angiopoyetina 2/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Angiopoyetina 2/antagonistas & inhibidores , Animales , Neoplasias de la Mama/cirugía , Línea Celular Tumoral , Neoplasias Colorrectales/cirugía , Femenino , Humanos , Neoplasias Renales/cirugía , Ratones , Ratones Endogámicos BALB C , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidoresRESUMEN
PURPOSE: To resolve a controversy involving the therapeutic impact of antiangiogenic drugs and particularly antibodies targeting the VEGF pathway, namely, a body of preclinical mouse therapy studies showing such drugs can promote invasion and/or distant metastasis when used as monotherapies. In contrast, clinical studies have not shown such promalignancy effects. However, most such clinical studies have involved patients also treated with concurrent chemotherapy highlighting the possibility that chemotherapy may prevent any potential promalignancy effect caused by an antiangiogenic drug treatment. EXPERIMENTAL DESIGN: The impact of antiangiogenic therapy using DC101, an antibody targeting mouse VEGFR-2 with or without concurrent chemotherapy was assessed in multiple human breast cancer xenograft models, where impact on orthotopic primary tumors was evaluated. Metastasis was also assessed during adjuvant and neoadjuvant plus adjuvant therapy, after surgical resection of primary tumors, with the same combination therapies. RESULTS: Antiangiogenic therapy, while blunting tumor volume growth, was found to increase local invasion in multiple primary tumor models, including a patient-derived xenograft, but this effect was blocked by concurrent chemotherapy. Similarly, the combination of paclitaxel with DC101 caused a marked reduction of micro- or macrometastatic disease in contrast to DC101 monotherapy, which was associated with small increases in metastatic disease. CONCLUSIONS: Conventional wisdom is that targeted biologic antiangiogenic agents such as bevacizumab when used with chemotherapy increase the efficacy of the chemotherapy treatment. Our results suggest the reverse may be true as well-chemotherapy may improve the impact of antiangiogenic drug treatment and, as a result, overall efficacy. Clin Cancer Res; 21(24); 5488-98. ©2015 AACR.
Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Neoplasias/patología , Neovascularización Patológica , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Biomarcadores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Terapia Neoadyuvante , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/mortalidad , Células Madre Neoplásicas/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Carga Tumoral/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Renal cell carcinoma (RCC), normally considered an intrinsically chemotherapy-resistant cancer, is currently treated with targeted biologic therapies, including antiangiogenic tyrosine kinase inhibitors (TKIs), such as pazopanib. The efficacy of these agents is limited by both intrinsic and acquired resistance. Death is almost always due to advanced metastatic disease, a treatment circumstance seldom modeled in preclinical (mouse) drug testing. Similarly, therapy results using postsurgical adjuvant therapy models of microscopic disease have not been reported. Using in vivo selection and transfection of established human RCC cell lines (786-0 and SN12-PM6), we derived clonal luciferase-expressing variants capable of spontaneous metastasis from an orthotopic primary tumor to organs typical of clinical RCC, including bone, lungs, and brain. The bioluminescence and consistent metastatic spread of von Hippel-Lindau-wild type SN12-PM6-1 cells allowed for the establishment of perioperative therapy models of RCC. We report that the combination of daily low-dose metronomic topotecan with pazopanib has highly potent antiprimary tumor as well as both postsurgical adjuvant and metastatic therapy efficacy despite lack of an antimetastatic effect of pazopanib monotherapy. The combination therapy resulted in sustained metastatic tumor cell dormancy, but tumor progression occurred upon treatment cessation. We also obtained evidence for a direct effect of pazopanib on RCC cells, resulting in increased intracellular concentration of topotecan. Our results suggest that this type of treatment combination should be considered for clinical evaluation in early- or late-stage metastatic disease, even for tumors seemingly intrinsically "resistant" to antiangiogenic TKIs or chemotherapy.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/cirugía , Neoplasias Renales/tratamiento farmacológico , Pirimidinas/uso terapéutico , Sulfonamidas/uso terapéutico , Topotecan/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Administración Metronómica , Administración Oral , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimioterapia Adyuvante , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Indazoles , Neoplasias Renales/cirugía , Dosis Máxima Tolerada , Metástasis de la Neoplasia , Pirimidinas/administración & dosificación , Sulfonamidas/administración & dosificación , Análisis de Supervivencia , Topotecan/administración & dosificaciónRESUMEN
Therapy-induced resistance remains a significant hurdle to achieve long-lasting responses and cures in cancer patients. We investigated the long-term consequences of genetically impaired angiogenesis by engineering multiple tumor models deprived of endoglin, a co-receptor for TGF-ß in endothelial cells actively engaged in angiogenesis. Tumors from endoglin-deficient mice adapted to the weakened angiogenic response, and refractoriness to diminished endoglin signaling was accompanied by increased metastatic capability. Mechanistic studies in multiple mouse models of cancer revealed that deficiency for endoglin resulted in a tumor vasculature that displayed hallmarks of endothelial-to-mesenchymal transition, a process of previously unknown significance in cancer biology, but shown by us to be associated with a reduced capacity of the vasculature to avert tumor cell intra- and extravasation. Nevertheless, tumors deprived of endoglin exhibited a delayed onset of resistance to anti-VEGF (vascular endothelial growth factor) agents, illustrating the therapeutic utility of combinatorial targeting of multiple angiogenic pathways for the treatment of cancer.
Asunto(s)
Endotelio Vascular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Tumores Neuroendocrinos/irrigación sanguínea , Neoplasias Pancreáticas/irrigación sanguínea , Animales , Células Cultivadas , Endoglina , Transición Epitelial-Mesenquimal , Femenino , Proteínas Activadoras de GTPasa/fisiología , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Neoplasias Hepáticas Experimentales/secundario , Ratones , Neovascularización Fisiológica , Neoplasias Pancreáticas/patología , Proteína 1 Relacionada con Twist/fisiología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidoresRESUMEN
Multiple angiogenesis inhibitors have been therapeutically validated in preclinical cancer models, and several in clinical trials. Here we report that angiogenesis inhibitors targeting the VEGF pathway demonstrate antitumor effects in mouse models of pancreatic neuroendocrine carcinoma and glioblastoma but concomitantly elicit tumor adaptation and progression to stages of greater malignancy, with heightened invasiveness and in some cases increased lymphatic and distant metastasis. Increased invasiveness is also seen by genetic ablation of the Vegf-A gene in both models, substantiating the results of the pharmacological inhibitors. The realization that potent angiogenesis inhibition can alter the natural history of tumors by increasing invasion and metastasis warrants clinical investigation, as the prospect has important implications for the development of enduring antiangiogenic therapies.