Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 54(12): 5132-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20921316

RESUMEN

NXL104 is a potent inhibitor of class A and C serine ß-lactamases, including KPC carbapenemases. Native and NXL104-inhibited TEM-1 and P99 ß-lactamases analyzed by liquid chromatography-electrospray ionization-time of flight mass spectrometry revealed that the inactivated enzymes formed a covalent adduct with NXL104. The principal inhibitory characteristics of NXL104 against TEM-1 and P99 ß-lactamases were determined, including partition ratios, dissociation constants (K), rate constants for deactivation (k(2)), and reactivation rates. NXL104 is a potent inhibitor of TEM-1 and P99, characterized by high carbamylation efficiencies (k(2)/K of 3.7 × 10(5) M(-1) s(-1) for TEM-1 and 1 × 10(4) M(-1) s(-1) for P99) and slow decarbamylation. Complete loss of ß-lactamase activity was obtained at a 1/1 enzyme/NXL104 ratio, with a k(3) value (rate constant for formation of product and free enzyme) close to zero for TEM-1 and P99. Fifty percent inhibitory concentrations (IC(50)s) were evaluated on selected ß-lactamases, and NXL104 was shown to be a very potent inhibitor of class A and C ß-lactamases. IC(50)s obtained with NXL104 (from 3 nM to 170 nM) were globally comparable on the ß-lactamases CTX-M-15 and SHV-4 with those obtained with the comparators (clavulanate, tazobactam, and sulbactam) but were far lower on TEM-1, KPC-2, P99, and AmpC than those of the comparators. In-depth studies on TEM-1 and P99 demonstrated that NXL104 had a comparable or better affinity and inactivation rate than clavulanate and tazobactam and in all cases an improved stability of the covalent enzyme/inhibitor complex.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Inhibidores de beta-Lactamasas , Compuestos de Azabiciclo/química , Concentración 50 Inhibidora , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray , beta-Lactamasas
2.
J Antimicrob Chemother ; 64(2): 326-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19493866

RESUMEN

BACKGROUND: NXL104 is a novel-structure beta-lactamase inhibitor with potent activity against both class A and class C enzymes. Among the class A carbapenemases, KPC-type enzymes are now spreading rapidly and KPC-related carbapenemase resistance is an emerging phenomenon of great clinical importance. The activity of NXL104 against KPC beta-lactamases was examined. METHODS: Enzymatic activity of purified recombinant KPC-2 was measured with nitrocefin as reporter substrate and inhibition by NXL104 was measured by determination of IC(50) values. Antimicrobial susceptibility testing of various beta-lactams combined with a fixed concentration of NXL104 at 4 mg/L against strains producing KPC enzymes was performed by the broth microdilution method. RESULTS: NXL104 was a potent inhibitor of KPC-2 with an IC(50) of 38 nM. NXL104 restored the antimicrobial activity of ceftazidime, ceftriaxone, imipenem and piperacillin against Enterobacteriaceae strains producing KPC-2 or KPC-3. MIC values of ceftazidime against KPC producers were reduced by up to 1000-fold by combination with NXL104. CONCLUSIONS: NXL104 inhibitory activity is unique in terms of spectrum, encompassing class A extended-spectrum beta-lactamases, class C enzymes and class A carbapenemases. Given the limited therapeutic options available for infections caused by multiresistant Enterobacteriaceae isolates, NXL104 beta-lactamase inhibitor is a promising agent to be used in combination with a beta-lactam to protect its antibacterial activity.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Inhibidores Enzimáticos/farmacología , Inhibidores de beta-Lactamasas , beta-Lactamas/farmacología , Cefalosporinas/metabolismo , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Estructura Molecular , beta-Lactamasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA