Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Circulation ; 146(11): 851-867, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35959657

RESUMEN

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by high propensity to life-threatening arrhythmias and progressive loss of heart muscle. More than 40% of reported genetic variants linked to ARVC reside in the PKP2 gene, which encodes the PKP2 protein (plakophilin-2). METHODS: We describe a comprehensive characterization of the ARVC molecular landscape as determined by high-resolution mass spectrometry, RNA sequencing, and transmission electron microscopy of right ventricular biopsy samples obtained from patients with ARVC with PKP2 mutations and left ventricular ejection fraction >45%. Samples from healthy relatives served as controls. The observations led to experimental work using multiple imaging and biochemical techniques in mice with a cardiac-specific deletion of Pkp2 studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes. RESULTS: Samples from patients with ARVC present a loss of nuclear envelope integrity, molecular signatures indicative of increased DNA damage, and a deficit in transcripts coding for proteins in the electron transport chain. Mice with a cardiac-specific deletion of Pkp2 also present a loss of nuclear envelope integrity, which leads to DNA damage and subsequent excess oxidant production (O2.- and H2O2), the latter increased further under mechanical stress (isoproterenol or exercise). Increased oxidant production and DNA damage is recapitulated in human induced pluripotent stem cell-derived PKP2-deficient myocytes. Furthermore, PKP2-deficient cells release H2O2 into the extracellular environment, causing DNA damage and increased oxidant production in neighboring myocytes in a paracrine manner. Treatment with honokiol increases SIRT3 (mitochondrial nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-3) activity, reduces oxidant levels and DNA damage in vitro and in vivo, reduces collagen abundance in the right ventricular free wall, and has a protective effect on right ventricular function. CONCLUSIONS: Loss of nuclear envelope integrity and subsequent DNA damage is a key substrate in the molecular pathology of ARVC. We show transcriptional downregulation of proteins of the electron transcript chain as an early event in the molecular pathophysiology of the disease (before loss of left ventricular ejection fraction <45%), which associates with increased oxidant production (O2.- and H2O2). We propose therapies that limit oxidant formation as a possible intervention to restrict DNA damage in ARVC.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Células Madre Pluripotentes Inducidas , Placofilinas , Adulto , Animales , Displasia Ventricular Derecha Arritmogénica/patología , Daño del ADN , Humanos , Peróxido de Hidrógeno , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mutación , Miocitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Oxidantes/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Volumen Sistólico , Función Ventricular Izquierda
2.
Circ Res ; 128(3): 419-432, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33342222

RESUMEN

RATIONALE: The cardiac sodium channel NaV1.5 has a fundamental role in excitability and conduction. Previous studies have shown that sodium channels cluster together in specific cellular subdomains. Their association with intracellular organelles in defined regions of the myocytes, and the functional consequences of that association, remain to be defined. OBJECTIVE: To characterize a subcellular domain formed by sodium channel clusters in the crest region of the myocytes and the subjacent subsarcolemmal mitochondria. METHODS AND RESULTS: Through a combination of imaging approaches including super-resolution microscopy and electron microscopy we identified, in adult cardiac myocytes, a NaV1.5 subpopulation in close proximity to subjacent subsarcolemmal mitochondria; we further found that subjacent subsarcolemmal mitochondria preferentially host the mitochondrial NCLX (Na+/Ca2+ exchanger). This anatomic proximity led us to investigate functional changes in mitochondria resulting from sodium channel activity. Upon TTX (tetrodotoxin) exposure, mitochondria near NaV1.5 channels accumulated more Ca2+ and showed increased reactive oxygen species production when compared with interfibrillar mitochondria. Finally, crosstalk between NaV1.5 channels and mitochondria was analyzed at a transcriptional level. We found that SCN5A (encoding NaV1.5) and SLC8B1 (which encode NaV1.5 and NCLX, respectively) are negatively correlated both in a human transcriptome data set (Genotype-Tissue Expression) and in human-induced pluripotent stem cell-derived cardiac myocytes deficient in SCN5A. CONCLUSIONS: We describe an anatomic hub (a couplon) formed by sodium channel clusters and subjacent subsarcolemmal mitochondria. Preferential localization of NCLX to this domain allows for functional coupling where the extrusion of Ca2+ from the mitochondria is powered, at least in part, by the entry of sodium through NaV1.5 channels. These results provide a novel entry-point into a mechanistic understanding of the intersection between electrical and structural functions of the heart.


Asunto(s)
Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Señalización del Calcio , Línea Celular , Femenino , Humanos , Cinética , Masculino , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Mitocondrias Cardíacas/ultraestructura , Proteínas Mitocondriales/genética , Miocitos Cardíacos/ultraestructura , Canal de Sodio Activado por Voltaje NAV1.5/genética , Imagen Individual de Molécula , Intercambiador de Sodio-Calcio/genética , Superóxidos/metabolismo
4.
Eur Heart J ; 43(12): 1251-1264, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34932122

RESUMEN

AIMS: Exercise increases arrhythmia risk and cardiomyopathy progression in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients, but the mechanisms remain unknown. We investigated transcriptomic changes caused by endurance training in mice deficient in plakophilin-2 (PKP2cKO), a desmosomal protein important for intercalated disc formation, commonly mutated in ARVC and controls. METHODS AND RESULTS: Exercise alone caused transcriptional downregulation of genes coding intercalated disk proteins. The changes converged with those in sedentary and in exercised PKP2cKO mice. PKP2 loss caused cardiac contractile deficit, decreased muscle mass and increased functional/transcriptomic signatures of apoptosis, despite increased fractional shortening and calcium transient amplitude in single myocytes. Exercise accelerated cardiac dysfunction, an effect dampened by pre-training animals prior to PKP2-KO. Consistent with PKP2-dependent muscle mass deficit, cardiac dimensions in human athletes carrying PKP2 mutations were reduced, compared to matched controls. CONCLUSIONS: We speculate that exercise challenges a cardiomyocyte "desmosomal reserve" which, if impaired genetically (e.g., PKP2 loss), accelerates progression of cardiomyopathy.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Condicionamiento Físico Animal , Placofilinas , Animales , Displasia Ventricular Derecha Arritmogénica/genética , Humanos , Ratones , Ratones Noqueados , Mutación , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Placofilinas/genética , Placofilinas/metabolismo
5.
J Mol Cell Cardiol ; 167: 118-128, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413295

RESUMEN

Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.


Asunto(s)
Adrenérgicos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Señalización del Calcio , Acoplamiento Excitación-Contracción , Miocitos Cardíacos/metabolismo , Conejos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
6.
Circulation ; 140(12): 1015-1030, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315456

RESUMEN

BACKGROUND: Plakophilin-2 (PKP2) is classically defined as a desmosomal protein. Mutations in PKP2 associate with most cases of gene-positive arrhythmogenic right ventricular cardiomyopathy. A better understanding of PKP2 cardiac biology can help elucidate the mechanisms underlying arrhythmic and cardiomyopathic events consequent to PKP2 deficiency. Here, we sought to capture early molecular/cellular events that can act as nascent arrhythmic/cardiomyopathic substrates. METHODS: We used multiple imaging, biochemical and high-resolution mass spectrometry methods to study functional/structural properties of cells/tissues derived from cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mice (PKP2cKO) 14 days post-tamoxifen injection, a time point preceding overt electrical or structural phenotypes. Myocytes from right or left ventricular free wall were studied separately. RESULTS: Most properties of PKP2cKO left ventricular myocytes were not different from control; in contrast, PKP2cKO right ventricular (RV) myocytes showed increased amplitude and duration of Ca2+ transients, increased Ca2+ in the cytoplasm and sarcoplasmic reticulum, increased frequency of spontaneous Ca2+ release events (sparks) even at comparable sarcoplasmic reticulum load, and dynamic Ca2+ accumulation in mitochondria. We also observed early- and delayed-after transients in RV myocytes and heightened susceptibility to arrhythmias in Langendorff-perfused hearts. In addition, ryanodine receptor 2 in PKP2cKO-RV cells presented enhanced Ca2+ sensitivity and preferential phosphorylation in a domain known to modulate Ca2+ gating. RNAseq at 14 days post-tamoxifen showed no relevant difference in transcript abundance between RV and left ventricle, neither in control nor in PKP2cKO cells. Instead, we found an RV-predominant increase in membrane permeability that can permit Ca2+ entry into the cell. Connexin 43 ablation mitigated the membrane permeability increase, accumulation of cytoplasmic Ca2+, increased frequency of sparks and early stages of RV dysfunction. Connexin 43 hemichannel block with GAP19 normalized [Ca2+]i homeostasis. Similarly, protein kinase C inhibition normalized spark frequency at comparable sarcoplasmic reticulum load levels. CONCLUSIONS: Loss of PKP2 creates an RV-predominant arrhythmogenic substrate (Ca2+ dysregulation) that precedes the cardiomyopathy; this is, at least in part, mediated by a Connexin 43-dependent membrane conduit and repressed by protein kinase C inhibitors. Given that asymmetric Ca2+ dysregulation precedes the cardiomyopathic stage, we speculate that abnormal Ca2+ handling in RV myocytes can be a trigger for gross structural changes observed at a later stage.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/metabolismo , Conexina 43/metabolismo , Desmosomas/metabolismo , Miocitos Cardíacos/fisiología , Placofilinas/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Homeostasis , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Placofilinas/genética
7.
Circ Res ; 122(11): 1501-1516, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29514831

RESUMEN

RATIONALE: In cardiomyocytes, NaV1.5 and Kir2.1 channels interact dynamically as part of membrane bound macromolecular complexes. OBJECTIVE: The objective of this study was to test whether NaV1.5 and Kir2.1 preassemble during early forward trafficking and travel together to common membrane microdomains. METHODS AND RESULTS: In patch-clamp experiments, coexpression of trafficking-deficient mutants Kir2.1Δ314-315 or Kir2.1R44A/R46A with wild-type (WT) NaV1.5WT in heterologous cells reduced inward sodium current compared with NaV1.5WT alone or coexpressed with Kir2.1WT. In cell surface biotinylation experiments, expression of Kir2.1Δ314-315 reduced NaV1.5 channel surface expression. Glycosylation analysis suggested that NaV1.5WT and Kir2.1WT channels associate early in their biosynthetic pathway, and fluorescence recovery after photobleaching experiments demonstrated that coexpression with Kir2.1 increased cytoplasmic mobility of NaV1.5WT, and vice versa, whereas coexpression with Kir2.1Δ314-315 reduced mobility of both channels. Viral gene transfer of Kir2.1Δ314-315 in adult rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current and inward sodium current, maximum diastolic potential and action potential depolarization rate, and increased action potential duration. On immunostaining, the AP1 (adaptor protein complex 1) colocalized with NaV1.5WT and Kir2.1WT within areas corresponding to t-tubules and intercalated discs. Like Kir2.1WT, NaV1.5WT coimmunoprecipitated with AP1. Site-directed mutagenesis revealed that NaV1.5WT channels interact with AP1 through the NaV1.5Y1810 residue, suggesting that, like for Kir2.1WT, AP1 can mark NaV1.5 channels for incorporation into clathrin-coated vesicles at the trans-Golgi. Silencing the AP1 ϒ-adaptin subunit in human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current, inward sodium current, and maximum diastolic potential and impaired rate-dependent action potential duration adaptation. CONCLUSIONS: The NaV1.5-Kir2.1 macromolecular complex pre-assembles early in the forward trafficking pathway. Therefore, disruption of Kir2.1 trafficking in cardiomyocytes affects trafficking of NaV1.5, which may have important implications in the mechanisms of arrhythmias in inheritable cardiac diseases.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Sarcolema/metabolismo , Potenciales de Acción , Animales , Colorantes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Miocitos Cardíacos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Canales de Sodio Activados por Voltaje/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(3): E416-E425, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28049825

RESUMEN

Long QT syndrome (LQTS) exhibits great phenotype variability among family members carrying the same mutation, which can be partially attributed to genetic factors. We functionally analyzed the KCNH2 (encoding for Kv11.1 or hERG channels) and TBX20 (encoding for the transcription factor Tbx20) variants found by next-generation sequencing in two siblings with LQTS in a Spanish family of African ancestry. Affected relatives harbor a heterozygous mutation in KCNH2 that encodes for p.T152HfsX180 Kv11.1 (hERG). This peptide, by itself, failed to generate any current when transfected into Chinese hamster ovary (CHO) cells but, surprisingly, exerted "chaperone-like" effects over native hERG channels in both CHO cells and mouse atrial-derived HL-1 cells. Therefore, heterozygous transfection of native (WT) and p.T152HfsX180 hERG channels generated a current that was indistinguishable from that generated by WT channels alone. Some affected relatives also harbor the p.R311C mutation in Tbx20. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Tbx20 enhanced human KCNH2 gene expression and hERG currents (IhERG) and shortened action-potential duration (APD). However, Tbx20 did not modify the expression or activity of any other channel involved in ventricular repolarization. Conversely, p.R311C Tbx20 did not increase KCNH2 expression in hiPSC-CMs, which led to decreased IhERG and increased APD. Our results suggest that Tbx20 controls the expression of hERG channels responsible for the rapid component of the delayed rectifier current. On the contrary, p.R311C Tbx20 specifically disables the Tbx20 protranscriptional activity over KCNH2 Therefore, TBX20 can be considered a KCNH2-modifying gene.


Asunto(s)
Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Potenciales de Acción/genética , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Células CHO , Línea Celular , Cricetulus , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Masculino , Ratones , Mutación/genética , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley
10.
Part Fibre Toxicol ; 14(1): 41, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29073907

RESUMEN

BACKGROUND: The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. METHODS: Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. RESULTS: Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFα and IFNγ) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. CONCLUSION: Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Oro/toxicidad , Nanopartículas del Metal/toxicidad , Células A549 , Animales , Línea Celular Transformada , Forma de la Célula/efectos de los fármacos , Femenino , Oro/administración & dosificación , Oro/farmacocinética , Células HeLa , Humanos , Mediadores de Inflamación/sangre , Inyecciones Intravenosas , Interferón gamma/sangre , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Medición de Riesgo , Distribución Tisular , Factor de Necrosis Tumoral alfa/sangre
11.
J Mol Cell Cardiol ; 99: 162-173, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27545043

RESUMEN

MicroRNAs (miR) have considerable potential as therapeutic tools in cardiac diseases. Alterations in atrial miR are involved in the development of atrial fibrillation (AF), but the molecular mechanism underlying their contribution to atrial remodeling in chronic atrial fibrillation (CAF) is only partially understood. Here we used miR array to analyze the miR profile of atrial biopsies from sinus rhythm (SR) and CAF patients. qRT-PCR identified a distinctive CAF-miR signature and described conserved miR-208b upregulation in human and ovine AF atrial tissue. We used bioinformatics analysis to predict genes and signaling pathways as putative miR-208b targets, which highlighted genes from the cardiac muscle gene program and from canonical WNT, gap-junction and Ca2+ signaling networks. Results from analysis of miR-208b-overexpressing HL-1 atrial myocytes and from myocytes isolated from CAF patients showed that aberrant miR-208b levels reduced the expression and function of L-type Ca2+ channel subunits (CACNA1C and CACNB2) as well as the sarcoplasmic reticulum-Ca2+ pump SERCA2. These findings clearly pointed to CAF-specific upregulated miR-208b as an important mediator in Ca2+ handling impairment during atrial remodeling.


Asunto(s)
Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Calcio/metabolismo , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Regiones no Traducidas 3' , Animales , Fibrilación Atrial/fisiopatología , Remodelación Atrial , Secuencia de Bases , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Línea Celular , Enfermedad Crónica , Conexina 43/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Atrios Cardíacos/fisiopatología , Humanos , Miosinas/genética , Unión Proteica , Interferencia de ARN , ARN Mensajero/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Ovinos , Proteínas Wnt/metabolismo
12.
Nat Commun ; 12(1): 4155, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230480

RESUMEN

The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Pericardio/citología , Pericardio/metabolismo , Animales , Quimiocinas , Vasos Coronarios/metabolismo , Embrión de Mamíferos , Transición Epitelial-Mesenquimal , Expresión Génica , Corazón , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso , Proteínas Nucleares , Pericardio/embriología , Factor de Respuesta Sérica , Transducción de Señal , Transactivadores , Factores de Transcripción/metabolismo , Transcriptoma
13.
Biomedicines ; 9(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064518

RESUMEN

Cancer is one of the leading causes of mortality worldwide due, in part, to limited success of some current therapeutic approaches. The clinical potential of many promising drugs is restricted by their systemic toxicity and lack of selectivity towards cancer cells, leading to insufficient drug concentration at the tumor site. To overcome these hurdles, we developed a novel drug delivery system based on polyurea/polyurethane nanocapsules (NCs) showing pH-synchronized amphoteric properties that facilitate their accumulation and selectivity into acidic tissues, such as tumor microenvironment. We have demonstrated that the anticancer drug used in this study, a hydrophobic anionophore named T21, increases its cytotoxic activity in acidic conditions when nanoencapsulated, which correlates with a more efficient cellular internalization. A biodistribution assay performed in mice has shown that the NCs are able to reach the tumor and the observed systemic toxicity of the free drug is significantly reduced in vivo when nanoencapsulated. Additionally, T21 antitumor activity is preserved, accompanied by tumor mass reduction compared to control mice. Altogether, this work shows these NCs as a potential drug delivery system able to reach the tumor microenvironment, reducing the undesired systemic toxic effects. Moreover, these nanosystems are prepared under scalable methodologies and straightforward process, and provide tumor selectivity through a smart mechanism independent of targeting ligands.

14.
J Clin Invest ; 131(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33621213

RESUMEN

Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known about the potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging, and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels were activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mice and pigs. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc, resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs, and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability compared with nonfailing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a potentially novel, targetable mechanism of cardiac arrhythmogenesis in heart failure.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Conexina 43/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Conexina 43/genética , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Ratones , Ratones Noqueados , Retículo Sarcoplasmático/genética , Porcinos
15.
Elife ; 92020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31934859

RESUMEN

We investigated targeting mechanisms of Na+ and KATP channels to the intercalated disk (ICD) of cardiomyocytes. Patch clamp and surface biotinylation data show reciprocal downregulation of each other's surface density. Mutagenesis of the Kir6.2 ankyrin binding site disrupts this functional coupling. Duplex patch clamping and Angle SICM recordings show that INa and IKATP functionally co-localize at the rat ICD, but not at the lateral membrane. Quantitative STORM imaging show that Na+ and KATP channels are localized close to each other and to AnkG, but not to AnkB, at the ICD. Peptides corresponding to Nav1.5 and Kir6.2 ankyrin binding sites dysregulate targeting of both Na+ and KATP channels to the ICD, but not to lateral membranes. Finally, a clinically relevant gene variant that disrupts KATP channel trafficking also regulates Na+ channel surface expression. The functional coupling between these two channels need to be considered when assessing clinical variants and therapeutics.


Asunto(s)
Ancirinas/química , Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Sitios de Unión , Biotinilación , Células HEK293 , Humanos , Mutagénesis , Miocardio/metabolismo , Técnicas de Placa-Clamp , Ratas
16.
Front Physiol ; 11: 623190, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33536940

RESUMEN

Plakophilin-2 (PKP2) is classically defined as a component of the desmosome. Besides its role in cell-cell adhesion, PKP2 can modulate transcription through intracellular signals initiated at the site of cell-cell contact. Mutations in PKP2 associate with arrhythmogenic right ventricular cardiomyopathy (ARVC). Recent data demonstrate that inflammation plays a key role in disease progression; other results show an abundance of anti-heart antibodies in patients with confirmed diagnosis of ARVC. Here, we test the hypothesis that, in adult cardiac myocytes, PKP2 transcript abundance is endogenously linked to the abundance of transcripts participating in the inflammatory/immune response. Cardiac-specific, tamoxifen (TAM)-activated PKP2-knockout mice (PKP2cKO) were crossed with a RiboTag line to allow characterization of the ribosome-resident transcriptome of cardiomyocytes after PKP2 knockdown. Data were combined with informatics analysis of human cardiac transcriptome using GTEx. Separately, the presence of non-myocyte cells at the time of analysis was assessed by imaging methods. We identified a large number of transcripts upregulated consequent to PKP2 deficiency in myocytes, inversely correlated with PKP2 abundance in human transcriptomes, and part of functional pathways associated with inflammatory/immune responses. Our data support the concept that PKP2 is transcriptionally linked, in cardiac myocytes, to genes coding for host-response molecules even in the absence of exogenous triggers. Targeted anti-inflammatory therapy may be effective in ARVC.

17.
Sci Rep ; 10(1): 10707, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612162

RESUMEN

Synapse-Associated Protein 97 (SAP97) is an anchoring protein that in cardiomyocytes targets to the membrane and regulates Na+ and K+ channels. Here we compared the electrophysiological effects of native (WT) and p.P888L SAP97, a common polymorphism. Currents were recorded in cardiomyocytes from mice trans-expressing human WT or p.P888L SAP97 and in Chinese hamster ovary (CHO)-transfected cells. The duration of the action potentials and the QT interval were significantly shorter in p.P888L-SAP97 than in WT-SAP97 mice. Compared to WT, p.P888L SAP97 significantly increased the charge of the Ca-independent transient outward (Ito,f) current in cardiomyocytes and the charge crossing Kv4.3 channels in CHO cells by slowing Kv4.3 inactivation kinetics. Silencing or inhibiting Ca/calmodulin kinase II (CaMKII) abolished the p.P888L-induced Kv4.3 charge increase, which was also precluded in channels (p.S550A Kv4.3) in which the CaMKII-phosphorylation is prevented. Computational protein-protein docking predicted that p.P888L SAP97 is more likely to form a complex with CaMKII than WT. The Na+ current and the current generated by Kv1.5 channels increased similarly in WT-SAP97 and p.P888L-SAP97 cardiomyocytes, while the inward rectifier current increased in WT-SAP97 but not in p.P888L-SAP97 cardiomyocytes. The p.P888L SAP97 polymorphism increases the Ito,f, a CaMKII-dependent effect that may increase the risk of arrhythmias.


Asunto(s)
Potenciales de Acción/fisiología , Arritmias Cardíacas/fisiopatología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Homólogo 1 de la Proteína Discs Large/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio Shal/fisiología , Animales , Arritmias Cardíacas/genética , Células CHO , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Línea Celular , Cricetulus , Homólogo 1 de la Proteína Discs Large/genética , Humanos , Canal de Potasio Kv1.5/fisiología , Ratones , Técnicas de Placa-Clamp , Fosforilación/fisiología , Polimorfismo de Nucleótido Simple/genética
18.
Cancers (Basel) ; 11(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635099

RESUMEN

Autophagy is a tightly regulated catabolic process that facilitates nutrient recycling from damaged organelles and other cellular components through lysosomal degradation. Deregulation of this process has been associated with the development of several pathophysiological processes, such as cancer and neurodegenerative diseases. In cancer, autophagy has opposing roles, being either cytoprotective or cytotoxic. Thus, deciphering the role of autophagy in each tumor context is crucial. Moreover, autophagy has been shown to contribute to chemoresistance in some patients. In this regard, autophagy modulation has recently emerged as a promising therapeutic strategy for the treatment and chemosensitization of tumors, and has already demonstrated positive clinical results in patients. In this review, the dual role of autophagy during carcinogenesis is discussed and current therapeutic strategies aimed at targeting autophagy for the treatment of cancer, both under preclinical and clinical development, are presented. The use of autophagy modulators in combination therapies, in order to overcome drug resistance during cancer treatment, is also discussed as well as the potential challenges and limitations for the use of these novel therapeutic strategies in the clinic.

19.
J Inorg Biochem ; 198: 110749, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31200320

RESUMEN

Three Pt(II) complexes containing the natural ligands curcumin and caffeine, namely [Pt(curc)(PPh3)2]Cl (1), [PtCl(curc)(DMSO)] (2) (curc = deprotonated curcumin) and trans-[Pt(caffeine)Cl2(DMSO)] (3), were synthesized and fully characterized. The data obtained suggest that, for both 1 and 2, the anion of curcumin is coordinated to the platinum ion via the oxygen atoms of the ß-diketonate moiety. Spectroscopic features reveal that in 2 and 3, a DMSO molecule is S-bonded to the metal centre. For 3, all data indicate a square-planar geometry formed by a 9-N bonded caffeine, two trans chloride anions and a DMSO. The three complexes undergo changes in solution upon incubation for 24 h; 1 and 2 release curcumin while 3 isomerizes from trans to cis configuration. The DNA-binding and cytotoxic properties of 1-3 were evaluated in vitro. Despite their structural similarity, curcuminate-containing 1 and 2 exhibit distinct DNA interactions. While 1 appears to intercalate between nucleobase pairs, inducing the oxidative degradation of the biomolecule, 2 behaves as a groove binder, by means of electrostatic forces. Caffeine-containing 3 exhibits a behaviour that is comparable to that of 2. Complexes 1 and 2 showed moderate to high cytotoxicity and selectivity against several cancer cell lines, while 3 is inactive. Compounds 1 and 2 can be further activated by visible-light irradiation.


Asunto(s)
Antineoplásicos/farmacología , Cafeína/farmacología , Complejos de Coordinación/farmacología , Curcumina/farmacología , ADN/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Cafeína/análogos & derivados , Cafeína/síntesis química , Cafeína/metabolismo , Bovinos , Línea Celular Tumoral , Cisplatino/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , Curcumina/análogos & derivados , Curcumina/síntesis química , Curcumina/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Humanos , Ligandos , Estructura Molecular , Platino (Metal)/química
20.
Biomolecules ; 9(8)2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412593

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide; hence novel treatments for this malignancy are eagerly needed. Since natural-based compounds represent a rich source of novel chemical entities in drug discovery, we have focused our attention on tambjamines, natural compounds isolated from marine invertebrates that have shown diverse pharmacological activities. Based on these structures, we have recently identified the novel indole-based tambjamine analog 21 (T21) as a promising antitumor agent, which modulates the expression of apoptotic proteins such as survivin. This antiapoptotic protein plays an important role in carcinogenesis and chemoresistance. In this work, we have elucidated the molecular mechanism by which the anticancer compound T21 exerts survivin inhibition and have validated this protein as a therapeutic target in different lung cancer models. T21 was able to reduce survivin protein levels in vitro by repressing its gene expression through the blockade of Janus kinase/Signal Transducer and Activator of Transcription-3 (JAK/STAT3)/survivin signaling pathway. Interestingly, this occurred even when the pathway was overstimulated with its ligand interleukin 6 (IL-6), which is frequently overexpressed in lung cancer patients who show poor clinical outcomes. Altogether, these results show T21 as a potent anticancer compound that effectively decreases survivin levels through STAT3 inhibition in lung cancer, appearing as a promising therapeutic drug for cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteína gp41 de Envoltorio del VIH/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Survivin/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Proteína gp41 de Envoltorio del VIH/síntesis química , Proteína gp41 de Envoltorio del VIH/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Estructura Molecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad , Survivin/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA