Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(4): E574-E583, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311318

RESUMEN

Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity.


Asunto(s)
Ríos/química , Salinidad , Contaminación del Agua , Concentración de Iones de Hidrógeno , Estados Unidos
2.
Proc Natl Acad Sci U S A ; 114(2): 352-357, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028234

RESUMEN

Directional change in environmental drivers sometimes triggers regime shifts in ecosystems. Theory and experiments suggest that regime shifts can be detected in advance, and perhaps averted, by monitoring resilience indicators such as variance and autocorrelation of key ecosystem variables. However, it is uncertain whether management action prompted by a change in resilience indicators can prevent an impending regime shift. We caused a cyanobacterial bloom by gradually enriching an experimental lake while monitoring an unenriched reference lake and a continuously enriched reference lake. When resilience indicators exceeded preset boundaries, nutrient enrichment was stopped in the experimental lake. Concentrations of algal pigments, dissolved oxygen saturation, and pH rapidly declined following cessation of nutrient enrichment and became similar to the unenriched lake, whereas a large bloom occurred in the continuously enriched lake. This outcome suggests that resilience indicators may be useful in management to prevent unwanted regime shifts, at least in some situations. Nonetheless, a safer approach to ecosystem management would build and maintain the resilience of desirable ecosystem conditions, for example, by preventing excessive nutrient input to lakes and reservoirs.


Asunto(s)
Cianobacterias/fisiología , Eutrofización/fisiología , Ecosistema , Monitoreo del Ambiente/métodos , Lagos/microbiología , Modelos Biológicos
3.
J Cell Sci ; 129(9): 1892-901, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27026526

RESUMEN

The capacity of the cell to produce, fold and degrade proteins relies on components of the proteostasis network. Multiple types of insults can impose a burden on this network, causing protein misfolding. Using thermal stress, a classic example of acute proteostatic stress, we demonstrate that ∼5-10% of the soluble cytosolic and nuclear proteome in human HEK293 cells is vulnerable to misfolding when proteostatic function is overwhelmed. Inhibiting new protein synthesis for 30 min prior to heat-shock dramatically reduced the amount of heat-stress induced polyubiquitylation, and reduced the misfolding of proteins identified as vulnerable to thermal stress. Following prior studies in C. elegans in which mutant huntingtin (Q103) expression was shown to cause the secondary misfolding of cytosolic proteins, we also demonstrate that mutant huntingtin causes similar 'secondary' misfolding in human cells. Similar to thermal stress, inhibiting new protein synthesis reduced the impact of mutant huntingtin on proteostatic function. These findings suggest that newly made proteins are vulnerable to misfolding when proteostasis is disrupted by insults such as thermal stress and mutant protein aggregation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína Huntingtina/metabolismo , Mutación Missense , Biosíntesis de Proteínas , Deficiencias en la Proteostasis/metabolismo , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Proteína Huntingtina/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología
4.
Acta Neuropathol ; 136(6): 919-938, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30140941

RESUMEN

The deposition of pathologic misfolded proteins in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia and amyotrophic lateral sclerosis is hypothesized to burden protein homeostatic (proteostatic) machinery, potentially leading to insufficient capacity to maintain the proteome. This hypothesis has been supported by previous work in our laboratory, as evidenced by the perturbation of cytosolic protein solubility in response to amyloid plaques in a mouse model of Alzheimer's amyloidosis. In the current study, we demonstrate changes in proteome solubility are a common pathology to mouse models of neurodegenerative disease. Pathological accumulations of misfolded tau, α-synuclein and mutant superoxide dismutase 1 in CNS tissues of transgenic mice were associated with changes in the solubility of hundreds of CNS proteins in each model. We observed that changes in proteome solubility were progressive and, using the rTg4510 model of inducible tau pathology, demonstrated that these changes were dependent upon sustained expression of the primary pathologic protein. In all of the models examined, changes in proteome solubility were robust, easily detected, and provided a sensitive indicator of proteostatic disruption. Interestingly, a subset of the proteins that display a shift towards insolubility were common between these different models, suggesting that a specific subset of the proteome is vulnerable to proteostatic disruption. Overall, our data suggest that neurodegenerative proteinopathies modeled in mice impose a burden on the proteostatic network that diminishes the ability of neural cells to prevent aberrant conformational changes that alter the solubility of hundreds of abundant cellular proteins.


Asunto(s)
Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Enfermedades Neurodegenerativas/patología , Ovillos Neurofibrilares/patología , Proteoma/metabolismo , Factores de Edad , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Enfermedades Neurodegenerativas/genética , Ovillos Neurofibrilares/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Pliegue de Proteína , Proteoma/genética , Solubilidad , Espectrometría de Masas en Tándem , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
5.
J Acoust Soc Am ; 144(6): 3201, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30599645

RESUMEN

To date, the infrasound community has avoided deployments in noisy urban sites because interests have been in monitoring distant sources with low noise sites. As monitoring interests expand to include low-energy urban sources only detectable close to the source, case studies are needed to demonstrate the challenges and benefits of urban infrasound monitoring. This case study highlights one approach to overcoming urban challenges and identifies a signal's source in a complex acoustic field. One 38 m and one 120 m aperture infrasound arrays were deployed on building rooftops north of downtown Dallas, Texas. Structural signals in the recorded data were identified, and the backazimuth to the source determined with frequency-wavenumber analysis. Fourteen days of data were analyzed to produce 314 coherent continuous-wave packets, with 246 of these detections associated with a narrow range of backazimuth directions. Analyzing the backazimuths from the two arrays identified the Mockingbird Bridge as the probable source which was the verified with seismic measurement on the structure. Techniques described here overcame the constraints imposed by urban environments and provide a basis to monitor infrastructure and its conditions at local distances (0-100 km).

6.
Ecol Lett ; 19(3): 230-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26689608

RESUMEN

Terrestrial organic matter can be assimilated by aquatic consumers but implications for biomass and production are unresolved. An ecosystem model was fit to estimate effects of phosphorus (P) load, planktivory, and supply rate of terrestrial particulate organic carbon (TPOC) on phytoplankton and zooplankton in five whole-lake experiments. Phytoplankton biomass increased with P load and planktivory and decreased with TPOC supply rate. Zooplankton biomass increased with P load and responded weakly to planktivory and TPOC supply rate. Zooplankton allochthony (proportion of carbon from terrestrial sources) decreased with P load and planktivory and increased with TPOC supply rate. Lakes with low allochthony (< 0.3) had wide ranges of phytoplankton and zooplankton biomass and production, depending on P load and planktivory. Lakes with high allochthony (> 0.3) had low biomass and production of both phytoplankton and zooplankton. In summary, terrestrial OC inhibits primary production and is a relatively low-quality food source for zooplankton.


Asunto(s)
Biomasa , Carbono/análisis , Cadena Alimentaria , Modelos Biológicos , Fósforo/metabolismo , Plancton/crecimiento & desarrollo , Lagos/química
7.
Proc Natl Acad Sci U S A ; 110(43): 17398-403, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101479

RESUMEN

Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems.


Asunto(s)
Lubina/crecimiento & desarrollo , Ecosistema , Peces/crecimiento & desarrollo , Lagos , Zooplancton/crecimiento & desarrollo , Algoritmos , Animales , Biomasa , Clorofila/metabolismo , Clorofila A , Seguimiento de Parámetros Ecológicos/métodos , Peces/clasificación , Concentración de Iones de Hidrógeno , Modelos Biológicos , Oxígeno/metabolismo , Dinámica Poblacional , Factores de Tiempo , Zooplancton/clasificación
8.
Proc Natl Acad Sci U S A ; 108(5): 1975-80, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245299

RESUMEN

Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ≈ 20-40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic (13)C content of these lakes to augment the small, natural contrast in (13)C between terrestrial and algal photosynthesis. Our study gives credence to a growing literature, which we review here, suggesting that significant terrestrial support of pelagic crustaceans (zooplankton) is widespread.


Asunto(s)
Carbono/metabolismo , Agua Dulce , Hidrógeno/metabolismo , Nitrógeno/metabolismo , Zooplancton/metabolismo , Animales , Isótopos , Especificidad de la Especie
9.
Environ Sci Technol ; 47(18): 10302-11, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23883395

RESUMEN

The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.


Asunto(s)
Ríos/química , Lluvia Ácida , Carbonatos/química , Monitoreo del Ambiente , Fenómenos Geológicos , Actividades Humanas , Concentración de Iones de Hidrógeno , Estados Unidos
10.
PLoS One ; 18(12): e0294995, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38091313

RESUMEN

Records of ice-on and ice-off dates are available for lakes and rivers across the Northern Hemisphere spanning decades and in some cases centuries. This data provides an opportunity to investigate the climatic processes that may control ice phenology. Previous studies have reported a trend toward shorter ice-covered seasons with global warming, as well as links between ice phenology and several modes of natural climate variability such as the North Atlantic Oscillation, the Pacific-North American Pattern, the El Niño-Southern Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation. The 11-year sunspot cycle has also been proposed as a driver of ice phenology, which is somewhat surprising given that this cycle's strongest impacts are in the stratosphere. In this study, we use a large data set of lakes and rivers across the Northern Hemisphere to test this potential link. We find little or no connection between the sunspot cycle and either ice-on or ice-off dates. We conclude that while many well-known climate cycles do impact ice phenology, we are able to rule out any strong impact of the solar cycle.


Asunto(s)
Lagos , Ríos , Estaciones del Año , El Niño Oscilación del Sur , Cubierta de Hielo
11.
Limnol Oceanogr Lett ; 8(1): 190-211, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37539375

RESUMEN

Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.

12.
J Neurophysiol ; 107(6): 1694-710, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22170964

RESUMEN

The supplementary eye fields (SEF) are thought to enable higher-level aspects of oculomotor control. The goal of the present experiment was to learn more about the SEF's role in orienting, specifically by examining neck muscle recruitment evoked by stimulation of the SEF. Neck muscle activity was recorded from multiple muscles in two monkeys during SEF stimulation (100 µA, 150-300 ms, 300 Hz, with the head restrained or unrestrained) delivered 200 ms into a gap period, before a visually guided saccade initiated from a central position (doing so avoids confounds between initial position and prestimulation neck muscle activity). SEF stimulation occasionally evoked overt gaze shifts and/or head movements but almost always evoked a response that invariably consisted of a contralateral head turning synergy by increasing activity on contralateral turning muscles and decreasing activity on ipsilateral turning muscles (when background activity was present). Neck muscle responses began well in advance of evoked gaze shifts (~30 ms after stimulation onset, leading gaze shifts by ~40-70 ms on average), started earlier and attained a larger magnitude when accompanied by progressively larger gaze shifts, and persisted on trials without overt gaze shifts. The patterns of evoked neck muscle responses resembled those evoked by frontal eye field (FEF) stimulation, except that response latencies from the SEF were ~10 ms longer. This basic description of the cephalomotor command evoked by SEF stimulation suggests that this structure, while further removed from the motor periphery than the FEF, accesses premotor orienting circuits in the brain stem and spinal cord in a similar manner.


Asunto(s)
Lóbulo Frontal/fisiología , Movimientos de la Cabeza/fisiología , Músculos del Cuello/fisiología , Orientación/fisiología , Campos Visuales/fisiología , Animales , Electromiografía , Macaca mulatta , Masculino , Estimulación Luminosa , Tiempo de Reacción
13.
Am Nat ; 178(4): 442-51, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21956023

RESUMEN

Regime shifts are massive, often irreversible, rearrangements of nonlinear ecological processes that occur when systems pass critical transition points. Ecological regime shifts sometimes have severe consequences for human well-being, including eutrophication in lakes, desertification, and species extinctions. Theoretical and laboratory evidence suggests that statistical anomalies may be detectable leading indicators of regime shifts in ecological time series, making it possible to foresee and potentially avert incipient regime shifts. Conditional heteroscedasticity is persistent variance characteristic of time series with clustered volatility. Here, we analyze conditional heteroscedasticity as a potential leading indicator of regime shifts in ecological time series. We evaluate conditional heteroscedasticity by using ecological models with and without four types of critical transition. On approaching transition points, all time series contain significant conditional heteroscedasticity. This signal is detected hundreds of time steps in advance of the regime shift. Time series without regime shifts do not have significant conditional heteroscedasticity. Because probability values are easily associated with tests for conditional heteroscedasticity, detection of false positives in time series without regime shifts is minimized. This property reduces the need for a reference system to compare with the perturbed system.


Asunto(s)
Adaptación Fisiológica/fisiología , Interpretación Estadística de Datos , Ecosistema , Modelos Biológicos , Análisis de Varianza , Simulación por Computador , Ecología
14.
Ecology ; 92(5): 1115-25, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21661572

RESUMEN

Fluxes of organic matter across habitat boundaries are common in food webs. These fluxes may strongly influence community dynamics, depending on the extent to which they are used by consumers. Yet understanding of basal resource use by consumers is limited, because describing trophic pathways in complex food webs is difficult. We quantified resource use for zooplankton, zoobenthos, and fishes in four low-productivity lakes, using a Bayesian mixing model and measurements of hydrogen, carbon, and nitrogen stable isotope ratios. Multiple sources of uncertainty were explicitly incorporated into the model. As a result, posterior estimates of resource use were often broad distributions; nevertheless, clear patterns were evident. Zooplankton relied on terrestrial and pelagic primary production, while zoobenthos and fishes relied on terrestrial and benthic primary production. Across all consumer groups terrestrial reliance tended to be higher, and benthic reliance lower, in lakes where light penetration was low due to inputs of terrestrial dissolved organic carbon. These results support and refine an emerging consensus that terrestrial and benthic support of lake food webs can be substantial, and they imply that changes in the relative availability of basal resources drive the strength of cross-habitat trophic connections.


Asunto(s)
Carbono/metabolismo , Ecosistema , Monitoreo del Ambiente , Agua Dulce/química , Modelos Biológicos , Animales , Teorema de Bayes , Carbono/química , Isótopos de Carbono , Simulación por Computador , Crustáceos , Peces , Insectos , Zooplancton
15.
J Environ Monit ; 13(8): 2321-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21720614

RESUMEN

Estuaries may be subject to warming due to global climate change but few studies have considered the drivers or seasonality of warming empirically. We analyzed temperature trends and rates of temperature change over time for the Hudson River estuary using long-term data, mainly from daily measures taken at the Poughkeepsie Water Treatment Facility. This temperature record is among the longest in the world for a river or estuary. The Hudson River has warmed 0.945 °C since 1946. Many of the warmest years in the record occurred in the last 16 years. A seasonal analysis of trends indicated significant warming for the months of April through August. The warming of the Hudson is primarily related to increasing air temperature. Increasing freshwater discharge into the estuary has not mitigated the warming trend.


Asunto(s)
Cambio Climático , Ríos , New York , Ríos/química , Estaciones del Año , Temperatura
16.
Ecology ; 102(12): e03540, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582563

RESUMEN

Impacts of invasive species are often context specific due to varying ecological interactions. Physical structure of environments hosting invaders is also potentially important but has received limited attention. An invasive macroalga, Agarophyton vermiculophyllum, has spread across the northern hemisphere with mixed positive, neutral and negative effects on resident species. Agarophyton colonizes mudflats that vary in topography due to interactions of sediments with hydrodynamic forces. We tested the hypothesis that mudflat geomorphology moderates the effect of Agarophyton on shorebirds and invertebrates. We surveyed 30 mudflats in the Virginia Coast Reserve quantifying elevation and topography. Invertebrate and bird abundances were also quantified. Mudflat geomorphology ranged from smooth to hummocky and was correlated with invertebrate and shorebird abundance and interactions based on piecewise structural equation models. After accounting for geomorphology, Agarophyton had little effect on invertebrate abundance. Shorebird numbers were differentially influenced by mudflat topography, with positive correlations to invertebrates (worms) on smooth mudflats, and to macroalgae on hummocky mudflats. These differences are likely to be due to sediment properties in interaction with structural changes induced by Agarophyton mats that affect prey accessibility for birds. Even on apparently simple mudflats, geomorphic structure emerged as important, modifying invasive species impacts and differentially influencing consumers.


Asunto(s)
Invertebrados , Algas Marinas , Animales , Aves , Especies Introducidas
17.
Nature ; 427(6971): 240-3, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14724637

RESUMEN

Ecosystems are supported by organic carbon from two distinct sources. Endogenous carbon is produced by photosynthesis within an ecosystem by autotrophic organisms. Exogenous carbon is produced elsewhere and transported into ecosystems. Consumers may use exogenous carbon with consequent influences on population dynamics, predator-prey relationships and ecosystem processes. For example, exogenous inputs provide resources that may enhance consumer abundance beyond levels supported by within-system primary production. Exogenous fluxes of organic carbon to ecosystems are often large, but this material is recalcitrant and difficult to assimilate, in contrast to endogenously produced organic matter, which is used more easily. Here we show, by the experimental manipulation of dissolved inorganic (13)C in two lakes, that internal primary production is insufficient to support the food webs of these ecosystems. Additions of NaH(13)CO(3) enriched the (13)C content of dissolved inorganic carbon, particulate organic carbon, zooplankton and fish. Dynamics of (13)C indicate that 40-55% of particulate organic carbon and 22-50% of zooplankton carbon are derived from terrestrial sources, showing that there is significant subsidy of these ecosystems by organic carbon produced outside their boundaries.


Asunto(s)
Carbono/metabolismo , Daphnia/metabolismo , Cadena Alimentaria , Agua Dulce/parasitología , Animales , Isótopos de Carbono , Peces/metabolismo , Agua Dulce/química , Michigan , Zooplancton/metabolismo
18.
PLoS One ; 15(4): e0231337, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32275732

RESUMEN

Exotic species may increase or decrease native biodiversity. However, effects of exotic species are often mixed; and indirect pathways and compensatory changes can mask effects. Context-specific assessments of the indirect impacts of exotic species are also needed across multiple spatial scales. Agarophyton vermiculophyllum (previously Gracilaria vermiculophylla), an exotic, invasive macroalga, has established throughout the western hemisphere with reported positive or neutral impacts on biodiversity. Shorebirds are an important group for conservation in areas invaded by A. vermiculophyllum. We assess the impacts of this invader on shorebirds by measuring behavior and habitat selection at spatial scales ranging from algal patches to the entire study region. Birds were considered either flexible-foragers that used diverse foraging techniques, or specialized-foragers that employed fewer, more specialized foraging techniques. Responses were scale dependent, with patterns varying between spatial scales, and between behavior and habitat selection. However, a general pattern of habitat selection emerged wherein flexible-foraging shorebirds preferred A. vermiculophyllum habitat, and for specialized-foragers, habitat selection of A. vermiculophyllum was mixed. Meanwhile, flexible-foraging birds tended to neutrally use or avoid uninvaded habitat, and specialized-foraging birds mostly preferred uninvaded habitat. Shorebird behavioral response was less clear; with flexible-foragers spending less time on bare sediment than expected, the only significant response. Shorebird response to A. vermiculophyllum differed by foraging mode; likely because flexible, opportunistic species more readily use invaded habitat. Increases in A. vermiculophyllum could result in functional homogenization if the bare habitat preferred by specialized-foragers is reduced too greatly. We hypothesize the effect of scale is driven by differences among tidal flats. Thus, tidal flat properties such as sediment grain size and microtopography would determine whether foraging from A. vermiculophyllum was optimal for a shorebird. Specialization and spatial scale are important when assessing the biodiversity conservation impacts of invasive A. vermiculophyllum.


Asunto(s)
Biodiversidad , Aves/fisiología , Conducta Alimentaria , Gracilaria/fisiología , Animales , Cadena Alimentaria , Movimiento
19.
Acta Neuropathol Commun ; 8(1): 43, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252825

RESUMEN

A hallmark pathology of Alzheimer's disease (AD) is the formation of amyloid ß (Aß) deposits that exhibit diverse localization and morphologies, ranging from diffuse to cored-neuritic deposits in brain parenchyma, with cerebral vascular deposition in leptomeningeal and parenchymal compartments. Most AD brains exhibit the full spectrum of pathologic Aß morphologies. In the course of studies to model AD amyloidosis, we have generated multiple transgenic mouse models that vary in the nature of the transgene constructs that are expressed; including the species origin of Aß peptides, the levels and length of Aß that is deposited, and whether mutant presenilin 1 (PS1) is co-expressed. These models recapitulate features of human AD amyloidosis, but interestingly some models can produce pathology in which one type of Aß morphology dominates. In prior studies of mice that primarily develop cored-neuritic deposits, we determined that Aß deposition is associated with changes in cytosolic protein solubility in which a subset of proteins become detergent-insoluble, indicative of secondary proteome instability. Here, we survey changes in cytosolic protein solubility across seven different transgenic mouse models that exhibit a range of Aß deposit morphologies. We find a surprisingly diverse range of changes in proteome solubility across these models. Mice that deposit human Aß40 and Aß42 in cored-neuritic plaques had the most robust changes in proteome solubility. Insoluble cytosolic proteins were also detected in the brains of mice that develop diffuse Aß42 deposits but to a lesser extent. Notably, mice with cored deposits containing only Aß42 had relatively few proteins that became detergent-insoluble. Our data provide new insight into the diversity of biological effects that can be attributed to different types of Aß pathology and support the view that fibrillar cored-neuritic plaque pathology is the more disruptive Aß pathology in the Alzheimer's cascade.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/genética , Amiloidosis/patología , Animales , Encéfalo/patología , Gliosis/genética , Gliosis/metabolismo , Gliosis/patología , Humanos , Ratones Transgénicos , Fragmentos de Péptidos/genética , Placa Amiloide/genética , Placa Amiloide/patología , Presenilina-1/genética , Proteoma , Solubilidad
20.
Oecologia ; 161(2): 313-24, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19471971

RESUMEN

Aquatic food webs are subsidized by allochthonous resources but the utilization of these resources by consumers can be difficult to quantify. Stable isotope ratios of hydrogen (deuterium:hydrogen; deltaD) potentially distinguish allochthonous inputs because deltaD differs between terrestrial and aquatic primary producers. However, application of this tracer is limited by uncertainties regarding the trophic fractionation of deltaD and the contributions of H from environmental water (often called "dietary water") to consumer tissue H. We addressed these uncertainties using laboratory experiments, field observations, modeling, and a literature synthesis. Laboratory experiments that manipulated the deltaD of water and food for insects, cladoceran zooplankton, and fishes provided strong evidence that trophic fractionation of deltaD was negligible. The proportion of tissue H derived from environmental water was substantial yet variable among studies; estimates of this proportion, inclusive of lab, field, and literature data, ranged from 0 to 0.39 (mean 0.17 +/- 0.12 SD). There is a clear need for additional studies of environmental water. Accounting for environmental water in mixing models changes estimates of resource use, although simulations suggest that uncertainty about the environmental water contribution does not substantially increase the uncertainty in estimates of resource use. As long as this uncertainty is accounted for, deltaD may be a powerful tool for estimating resource use in food webs.


Asunto(s)
Aedes/química , Daphnia/química , Deuterio/análisis , Cadena Alimentaria , Agua Dulce/química , Trucha/metabolismo , Animales , Cromatografía de Gases , Simulación por Computador , Larva/química , Modelos Biológicos , Músculo Esquelético/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA