Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 141(13): 1597-1609, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36315912

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a T-cell malignancy characterized by cell subsets and enriched with leukemia-initiating cells (LICs). ß-Catenin modulates LIC activity in T-ALL. However, its role in maintaining established leukemia stem cells remains largely unknown. To identify functionally relevant protein interactions of ß-catenin in T-ALL, we performed coimmunoprecipitation followed by liquid chromatography-mass spectrometry. Here, we report that a noncanonical functional interaction of ß-catenin with the Forkhead box O3 (FOXO3) transcription factor positively regulates LIC-related genes, including the cyclin-dependent kinase 4, which is a crucial modulator of cell cycle and tumor maintenance. We also confirm the relevance of these findings using stably integrated fluorescent reporters of ß-catenin and FOXO3 activity in patient-derived xenografts, which identify minor subpopulations with enriched LIC activity. In addition, gene expression data at the single-cell level of leukemic cells of primary patients at the time of diagnosis and minimal residual disease (MRD) up to 30 days after the standard treatments reveal that the expression of ß-catenin- and FOXO3-dependent genes is present in the CD82+CD117+ cell fraction, which is substantially enriched with LICs in MRD as well as in early T-cell precursor ALL. These findings highlight key functional roles for ß-catenin and FOXO3 and suggest novel therapeutic strategies to eradicate aggressive cell subsets in T-ALL.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , beta Catenina , Humanos , beta Catenina/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología
2.
J Exp Clin Cancer Res ; 42(1): 218, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620852

RESUMEN

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, characterized by restricted cellular subsets with asymmetrically enriched leukemia initiating cell (LIC) activity. Nonetheless, it is still unclear which signaling programs promote LIC maintenance and progression. METHODS: Here, we evaluated the role of the biological clock in the regulation of the molecular mechanisms and signaling pathways impacting the cellular dynamics in T-ALL through an integrated experimental approach including gene expression profiling of shRNA-modified T-ALL cell lines and Chromatin Immunoprecipitation Sequencing (ChIP-Seq) of leukemic cells. Patient-derived xenograft (PDXs) cell subsets were also genetically manipulated in order to assess the LIC activity modulated by the loss of biological clock in human T-ALL. RESULTS: We report that the disruption of the circadian clock circuitry obtained through shRNA-mediated knockdown of CLOCK and BMAL1 genes negatively impacted the growth in vitro as well as the activity in vivo of LIC derived from PDXs after transplantation into immunodeficient recipient mice. Additionally, gene expression data integrated with ChIP-Seq profiles of leukemic cells revealed that the circadian clock directly promotes the expression of genes, such as IL20RB, crucially involved in JAK/STAT signaling, making the T-ALL cells more responsive to Interleukin 20 (IL20). CONCLUSION: Taken together, our data support the concept that the biological clock drives the expression of IL20R prompting JAK/STAT signaling and promoting LIC activity in T-ALL and suggest that the selective targeting of circadian components could be therapeutically relevant for the treatment of T-ALL patients.


Asunto(s)
Relojes Circadianos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animales , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transducción de Señal , Modelos Animales de Enfermedad , ARN Interferente Pequeño , Linfocitos T
3.
Sci Rep ; 13(1): 21199, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040752

RESUMEN

Notch signaling is an evolutionary conserved pathway with a key role in tissue homeostasis, differentiation and proliferation. It was reported that Notch1 receptor negatively regulates mouse osteoclast development and formation by inhibiting the expression of macrophage colony-stimulating factor in mesenchymal cells. Nonetheless, the involvement of Notch1 pathway in the generation of human osteoclasts is still controversial. Here, we report that the constitutive activation of Notch1 signaling induced a differentiation block in human mononuclear CD14+ cells directly isolated from peripheral blood mononuclear cells (PBMCs) upon in vitro stimulation to osteoclasts. Additionally, using a combined approach of single-cell RNA sequencing (scRNA-Seq) simultaneously with a panel of 31 oligo-conjugated antibodies against cell surface markers (AbSeq assay) as well as unsupervised learning methods, we detected four different cell stages of human RANKL-induced osteoclastogenesis after 5 days in which Notch1 signaling enforces the cell expansion of specific subsets. These cell populations were characterized by distinct gene expression and immunophenotypic profiles and active Notch1, JAK/STAT and WNT signaling pathways. Furthermore, cell-cell communication analyses revealed extrinsic modulators of osteoclast progenitors including the IL7/IL7R and WNT5a/RYK axes. Interestingly, we also report that Interleukin-7 receptor (IL7R) was a downstream effector of Notch1 pathway and that Notch1 and IL7R interplay promoted cell expansion of human RANKL-induced osteoclast progenitors. Taken together, these findings underline a novel cell pattern of human osteoclastogenesis, outlining the key role of Notch1 and IL-7R signaling pathways.


Asunto(s)
Leucocitos Mononucleares , Osteogénesis , Humanos , Diferenciación Celular , Osteoclastos/metabolismo , Ligando RANK/farmacología , Ligando RANK/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA