RESUMEN
It is urgent to develop less toxic and more efficient treatments for leishmaniases and trypanosomiases. We explore the possibility to target the parasite mitochondrial HslVU protease, which is essential for growth and has no analogue in the human host. For this, we develop compounds potentially inhibiting the complex assembly by mimicking the C-terminal (C-ter) segment of the ATPase HslU. We previously showed that a dodecapeptide derived from Leishmania major HslU C-ter segment (LmC12-U2, Cpd 1) was able to bind to and activate the digestion of a fluorogenic substrate by LmHslV. Here, we present the study of its structure-activity relationships. By replacing each essential residue with related non-proteinogenic residues, we obtained more potent analogues. In particular, a cyclohexylglycine residue at position 11 (cpd 24) allowed a more than three-fold gain in potency while reducing the size of compound 24 from twelve to six residues (cpd 50) without significant loss of potency, opening the way toward short HslU C-ter peptidomimetics as potential inhibitors of HslV proteolytic function. Finally, conjugates constituted of LmC6-U2 analogues and a mitochondrial penetrating peptide were found to penetrate into the promastigote form of L. infantum and to inhibit the parasite growth without showing toxicity toward human THP-1 cells at the same concentration (i.e. 30 µM).
Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Adenosina Trifosfatasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Leishmania major/enzimología , Estructura Molecular , Relación Estructura-Actividad , Células THP-1RESUMEN
Leishmania affects millions of people worldwide. Its genome undergoes constitutive mosaic aneuploidy, a type of genomic plasticity that may serve as an adaptive strategy to survive distinct host environments. We previously found high rates of asymmetric chromosome allotments during mitosis that lead to the generation of such ploidy. However, the underlying molecular events remain elusive. Centromeres and kinetochores most likely play a key role in this process, yet their identification has failed using classical methods. Our analysis of the unconventional kinetochore complex recently discovered in Trypanosoma brucei (KKTs) leads to the identification of a Leishmania KKT gene candidate (LmKKT1). The GFP-tagged LmKKT1 displays "kinetochore-like" dynamics of intranuclear localization throughout the cell cycle. By ChIP-Seq assay, one major peak per chromosome is revealed, covering a region of 4 ±2 kb. We find two largely conserved motifs mapping to 14 of 36 chromosomes while a higher density of retroposons are observed in 27 of 36 centromeres. The identification of centromeres and of a kinetochore component of Leishmania chromosomes opens avenues to explore their role in mosaic aneuploidy.
Asunto(s)
Centrómero/metabolismo , Cromosomas/química , Genoma de Protozoos , Cinetocoros/metabolismo , Leishmania major/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Aneuploidia , Secuencia de Bases , Centrómero/ultraestructura , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Cinetocoros/ultraestructura , Leishmania major/metabolismo , Mitosis , Mosaicismo , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
HslVU is an ATP-dependent proteolytic complex present in certain bacteria and in the mitochondrion of some primordial eukaryotes, including deadly parasites such as Leishmania. It is formed by the dodecameric protease HslV and the hexameric ATPase HslU, which binds via the C-terminal end of its subunits to HslV and activates it by a yet unclear allosteric mechanism. We undertook the characterization of HslV from Leishmania major (LmHslV), a trypanosomatid that expresses two isoforms for HslU, LmHslU1 and LmHslU2. Using a novel and sensitive peptide substrate, we found that LmHslV can be activated by peptides derived from the C-termini of both LmHslU1 and LmHslU2. Truncations, Ala- and D-scans of the C-terminal dodecapeptide of LmHslU2 (LmC12-U2) showed that five out of the six C-terminal residues of LmHslU2 are essential for binding to and activating HslV. Peptide cyclisation with a lactam bridge allowed shortening of the peptide without loss of potency. Finally, we found that dodecapeptides derived from HslU of other parasites and bacteria are able to activate LmHslV with similar or even higher efficiency. Importantly, using electron microscopy approaches, we observed that the activation of LmHslV was accompanied by a large conformational remodeling, which represents a yet unidentified layer of control of HslV activation.
Asunto(s)
Leishmania major/enzimología , Péptidos/farmacología , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Activación Enzimática/efectos de los fármacos , Péptidos/química , Estructura Secundaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Serina Endopeptidasas/química , Especificidad por SustratoRESUMEN
Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the 'divergent' eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids.
Asunto(s)
Cromosomas , Leishmania major/genética , Mitosis/genética , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/genética , Transporte Biológico , Centrómero/química , Centrómero/metabolismo , Cromosomas/química , Proteínas de Complejo Poro Nuclear/análisis , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Protozoarias/análisis , Proteínas Protozoarias/metabolismoRESUMEN
TbFlabarin is the Trypanosoma brucei orthologue of the Leishmania flagellar protein LdFlabarin but its sequence is 33% shorter than LdFlabarin, as it lacks a C-terminal domain that is indispensable for LdFlabarin to localize to the Leishmania flagellum. TbFlabarin is mainly expressed in the procyclic forms of the parasite and localized to the flagellum, but only when two palmitoylable cysteines at positions 3 and 4 are present. TbFlabarin is more strongly attached to the membrane fraction than its Leishmania counterpart, as it resists complete solubilization with as much as 0.5% NP-40. Expression ablation by RNA interference did not change parasite growth in culture, its morphology or apparent motility. Heterologous expression showed that neither TbFlabarin in L. amazonensis nor LdFlabarin in T. brucei localized to the flagellum, revealing non-cross-reacting targeting signals between the two species.
Asunto(s)
Flagelos/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/química , Secuencia de Aminoácidos , ADN Protozoario/aislamiento & purificación , Electroporación , Flagelina/química , Leishmania/química , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/fisiología , Interferencia de ARN , ARN Protozoario/aislamiento & purificación , Alineación de Secuencia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/ultraestructuraRESUMEN
BACKGROUND: Trypanosomatid parasites possess a single mitochondrion which is classically involved in the energetic metabolism of the cell, but also, in a much more original way, through its single and complex DNA (termed kinetoplast), in the correct progress of cell division. In order to identify proteins potentially involved in the cell cycle, we performed RNAi knockdowns of 101 genes encoding mitochondrial proteins using procyclic cells of Trypanosoma brucei. RESULTS: A major cell growth reduction was observed in 10 cases and a moderate reduction in 29 other cases. These data are overall in agreement with those previously obtained by a case-by-case approach performed on chromosome 1 genes, and quantitatively with those obtained by "high-throughput phenotyping using parallel sequencing of RNA interference targets" (RIT-seq). Nevertheless, a detailed analysis revealed many qualitative discrepancies with the RIT-seq-based approach. Moreover, for 37 out of 39 mutants for which a moderate or severe growth defect was observed here, we noted abnormalities in the cell cycle progress, leading to increased proportions of abnormal cell cycle stages, such as cells containing more than 2 kinetoplasts (K) and/or more than 2 nuclei (N), and modified proportions of the normal phenotypes (1N1K, 1N2K and 2N2K). CONCLUSIONS: These data, together with the observation of other abnormal phenotypes, show that all the corresponding mitochondrial proteins are involved, directly or indirectly, in the correct progress or, less likely, in the regulation, of the cell cycle in T. brucei. They also show how post-genomics analyses performed on a case-by-case basis may yield discrepancies with global approaches.
Asunto(s)
Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Trypanosoma brucei brucei/metabolismo , División Celular/fisiología , Citocinesis/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Oligonucleótidos/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/crecimiento & desarrolloRESUMEN
Leishmania are unicellular eukaryotes that have many markedly original molecular features compared with other uni- or multicellular eukaryotes like yeasts or mammals. Genome plasticity in this parasite has been the subject of many publications, and has been associated with drug resistance or adaptability. Aneuploidy has been suspected by several authors and it is now confirmed using state-of-the-art technologies such as high-throughput DNA sequencing. The analysis of genome contents at the single cell level using fluorescence in situ hybridization (FISH) has brought a new light on the genome organization: within a cell population, every chromosome, in every cell, may be present in at least two ploidy states (being either monosomic, disomic or trisomic), and the chromosomal content varies greatly from cell to cell, thus generating a constitutive intra-strain genomic heterogeneity, here termed 'mosaic aneuploidy'. Mosaic aneuploidy deeply affects the genetics of these organisms, leading, for example, to an extreme degree of intra-strain genomic diversity, as well as to a clearance of heterozygous cells in the population without however affecting genetic heterogeneity. Second, mosaic aneuploidy might be considered as a powerful strategy evolved by the parasite for adapting to modifications of environment conditions as well as for the emergence of drug resistance. On the whole, mosaic aneuploidy may be considered as a novel mechanism for generating phenotypic diversity driven by genomic plasticity.
Asunto(s)
Aneuploidia , Genoma de Protozoos , Leishmania/genética , Adaptación Biológica , Evolución Molecular , Heterogeneidad Genética , Tamaño del Genoma , Inestabilidad GenómicaRESUMEN
The protozoan parasite Leishmania is generally considered to be diploid, although a few chromosomes have been described as aneuploid. Using fluorescence in situ hybridization (FISH), we determined the number of homologous chromosomes per individual cell in L. major (i) during interphase and (ii) during mitosis. We show that, in Leishmania, aneuploidy appears to be the rule, as it affects all the chromosomes that we studied. Moreover, every chromosome was observed in at least two ploidy states, among monosomic, disomic or trisomic, in the cell population. This variable chromosomal ploidy among individual cells generates intra-strain heterogeneity, here precisely chromosomal mosaicism. We also show that this mosaicism, hence chromosome ploidy distribution, is variable among clones and strains. Finally, when we examined dividing nuclei, we found a surprisingly high rate of asymmetric chromosome allotments, showing that the transmission of genetic material during mitosis is highly unstable in this 'divergent' eukaryote: this leads to continual generation of chromosomal mosaicism. Using these results, we propose a model for the occurrence and persistence of this mosaicism. We discuss the implications of this additional unique feature of Leishmania for its biology and genetics, in particular as a novel genetic mechanism to generate phenotypic variability from genomic plasticity.
Asunto(s)
Aneuploidia , Aberraciones Cromosómicas , Leishmania major/citología , Leishmania major/genética , Segregación Cromosómica , Hibridación Fluorescente in Situ , Leishmania major/crecimiento & desarrollo , Mitosis , Parasitología/métodosRESUMEN
Cilia and flagella are complex, microtubule (MT)-filled cell organelles of which the structure is evolutionarily conserved from protistan cells to mammalian sperm and the size is regulated. The best-established model for flagellar length (FL) control is set by the balance of continuous MT assembly and disassembly occurring at the flagellar tip. Because steady-state assembly of tubulin onto the distal end of the flagellum requires intraflagellar transport (IFT)--a bidirectional movement of large protein complexes that occurs within the flagellum--FL control must rely upon the regulation of IFT. This does not preclude that other pathways might "directly" affect MT assembly and disassembly. Now, among the superfamily of kinesins, family-13 (MCAK/KIF2) members exhibit a MT-depolymerizing activity responsible for their essential functions in mitosis. Here we present a novel family-13 kinesin from the flagellated protozoan parasite Leishmania major, that localizes essentially to the flagellum, and whose overexpression produces flagellar shortening and knockdown yields long flagella. Using negative mutants, we demonstrate that this phenotype is linked with the MT-binding and -depolymerizing activity of this kinesin. This is the first report of an effector protein involved in FL control through a direct action in MT dynamics, thus this finding complements the assembly-disassembly model.
Asunto(s)
Flagelos/metabolismo , Cinesinas/metabolismo , Leishmania major/metabolismo , Modelos Biológicos , Animales , Flagelos/fisiología , Cinesinas/genética , Microtúbulos/metabolismo , Tamaño de los Órganos/fisiología , Transporte de Proteínas/fisiología , Interferencia de ARNRESUMEN
Microtubules are key players in the biology of Trypanosomatid parasites, not only as classical components of the mitotic spindle, microtubule-organizing centres and flagellum but also as the essential constituent of the cytoskeleton. Their length dynamics are regulated by, among others, microtubule-severing proteins. Four and six genes encoding microtubule-severing proteins can be found bioinformatically in the Leishmania major and Trypanosoma brucei genome respectively. We investigated all these proteins in these organisms, which include the katanin, katanin-like, spastin and fidgetin, and looked at their subcellular localization as well as their putative function by examining 'loss-of-function' phenotypes. The katanin-like KAT60b was found implicated in flagellar length reduction, but not in its size increase, while the katanin p80 subunit appeared clearly involved in cytokinesis. Fidgetin and spastin homologues were both localized in the nucleus: the first as a discrete and variable number of dots during most of the cell cycle, redistributing to the spindle and midbody during mitosis; the second concentrated as < or = 5 perinucleolar punctuations, similar to the electron-dense plaques identified in T. brucei, which were assimilated to kinetochores. This first study of microtubule-severing proteins in 'divergent' eukaryotes gives further insight into the multiple functions of these proteins identified in the hitherto studied models.
Asunto(s)
Flagelos/metabolismo , Leishmania major/enzimología , Microtúbulos/metabolismo , Mitosis , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/enzimología , Adenosina Trifosfatasas/metabolismo , Animales , Genes Protozoarios , Katanina , Leishmania major/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trypanosoma brucei brucei/genéticaRESUMEN
Phytomonas spp. are members of the family Trypanosomatidae that parasitize plants and may cause lethal diseases in crops such as Coffee Phloem necrosis, Hartrot in coconut, and Marchitez sorpresiva in oil palm. In this study, the molecular karyotype of 6 isolates from latex plants has been entirely elucidated by pulsed-field gel electrophoresis and DNA hybridization. Twenty-one chromosomal linkage groups constituting heterologous chromosomes and sizing between 0.3 and 3 Mb could be physically defined by the use of 75 DNA markers (sequence-tagged sites and genes). From these data, the genome size can be estimated at 25.5 (+/-2) Mb. The physical linkage groups were consistently conserved in all strains examined. Moreover, the finding of several pairs of different-sized homologous chromosomes strongly suggest diploidy for this organism. The definition of the complete molecular karyotype of Phytomonas represents an essential primary step toward sequencing the genome of this parasite of economical importance.
Asunto(s)
Mapeo Cromosómico , Diploidia , Genoma de Protozoos/genética , Trypanosomatina/genética , Animales , Coffea/parasitología , Necrosis/genética , Floema/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitologíaRESUMEN
Approximately two-thirds of Duchenne muscular dystrophy (DMD) patients show intragenic deletions ranging from one to several exons of the DMD gene and leading to a premature stop codon. Other deletions that maintain the translational reading frame of the gene result in the milder Becker muscular dystrophy (BMD) form of the disease. Thus the opportunity to transform a DMD phenotype into a BMD phenotype appeared as a new treatment strategy with the development of antisense oligonucleotides technology, which is able to induce an exon skipping at the pre-mRNA level in order to restore an open reading frame. Because the DMD gene contains 79 exons, thousands of potential transcripts could be produced by exon skipping and should be investigated. The conventional approach considers skipping of a single exon. Here we report the comparison of single- and multiple-exon skipping strategies based on bioinformatic analysis. By using the Universal Mutation Database (UMD)-DMD, we predict that an optimal multiexon skipping leading to the del45-55 artificial dystrophin (c.6439_8217del) could transform the DMD phenotype into the asymptomatic or mild BMD phenotype. This multiple-exon skipping could theoretically rescue up to 63% of DMD patients with a deletion, while the optimal monoskipping of exon 51 would rescue only 16% of patients.
Asunto(s)
Distrofina/genética , Exones , Distrofia Muscular de Duchenne/genética , Eliminación de Secuencia , Adolescente , Adulto , Niño , Codón sin Sentido , Biología Computacional , Humanos , Masculino , Persona de Mediana Edad , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido , Sistemas de Lectura Abierta , Fenotipo , Análisis de Secuencia de ARNRESUMEN
BACKGROUND: Trypanosomatids exhibit a unique gene organization into large directional gene clusters (DGCs) in opposite directions. The transcription "strand switch region" (SSR) separating the two large DGCs that constitute chromosome 1 of Leishmania major has been the subject of several studies and speculations. Thus, it has been suspected of being the single replication origin of the chromosome, the transcription initiation site for both DGCs or even a centromere. Here, we have used an inter-species compared genomics approach on this locus in order to try to identify conserved features or motifs indicative of a putative function. RESULTS: We isolated, and compared the structure and nucleotide sequence of, this SSR in 15 widely divergent species of Leishmania and Sauroleishmania. As regards its intrachromosomal position, size and AT content, the general structure of this SSR appears extremely stable among species, which is another demonstration of the remarkable structural stability of these genomes at the evolutionary level. Sequence alignments showed several interesting features. Overall, only 30% of nucleotide positions were conserved in the SSR among the 15 species, versus 74% and 62% in the 5' parts of the adjacent XPP and PAXP genes, respectively. However, nucleotide divergences were not distributed homogeneously along this sequence. Thus, a central fragment of approximately 440 bp exhibited 54% of identity among the 15 species. This fragment actually represents a new Leishmania-specific CDS of unknown function which had been overlooked since the annotation of this chromosome. The encoded protein comprises two trans-membrane domains and is classified in the "structural protein" GO category. We cloned this novel gene and expressed it as a recombinant green fluorescent protein-fused version, which showed its localisation to the endoplasmic reticulum. The whole of these data shorten the actual SSR to an 887-bp segment as compared with the original 1.6 kb. In the rest of the SSR, the percentage of identity was much lower, around 22%. Interestingly, the 72-bp fragment where the putatively single transcription initiation site of chromosome 1 was identified is located in a low-conservation portion of the SSR and is itself highly polymorphic amongst species. Nevertheless, it is highly C-rich and presents a unique poly(C) tract in the same position in all species. CONCLUSION: This inter-specific comparative study, the first of its kind, (a) allowed to reveal a novel genus-specific gene and (b) identified a conserved poly(C) tract in the otherwise highly polymorphic region containing the putative transcription initiation site. This allows hypothesising an intervention of poly(C)-binding proteins known elsewhere to be involved in transcriptional control.
Asunto(s)
ADN Protozoario/genética , Genómica/métodos , Leishmania/genética , Animales , Cromosomas/genética , ADN Protozoario/química , Genes Protozoarios , Leishmania/clasificación , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
The parasite Leishmania donovani causes a fatal disease termed visceral leishmaniasis. The process through which the parasite adapts to environmental change remains largely unknown. Here we show that aneuploidy is integral for parasite adaptation and that karyotypic fluctuations allow for selection of beneficial haplotypes, which impact transcriptomic output and correlate with phenotypic variations in proliferation and infectivity. To avoid loss of diversity following karyotype and haplotype selection, L. donovani utilizes two mechanisms: polyclonal selection of beneficial haplotypes to create coexisting subpopulations that preserve the original diversity, and generation of new diversity as aneuploidy-prone chromosomes tolerate higher mutation rates. Our results reveal high aneuploidy turnover and haplotype selection as a unique evolutionary adaptation mechanism that L. donovani uses to preserve genetic diversity under strong selection. This unexplored process may function in other human diseases, including fungal infection and cancer, and stimulate innovative treatment options.
Asunto(s)
Aneuploidia , Haplotipos , Leishmania donovani/genética , Proteínas Protozoarias/genética , Selección Genética , Adaptación BiológicaRESUMEN
The Leishmania genome project reference strain, Leishmania major Friedlin, is trisomic for chromosome 1. The complete sequence of this chromosome has revealed that the genes are grouped into two large clusters of the polycistronic type, each borne by one DNA strand and located on each side of a 1.6-kb sequence often termed the switch region. Several hypotheses concerning the role of this switch region have been put forward (region of initiation of transcription for both gene clusters, origin of replication or centromeric sequence). In the present study, we have deleted this region on the three copies of chromosome 1 by sequential targeted replacements. The absence of the switch region did not alter the mitotic stability of the three deleted chromosomes. This region therefore does not appear necessary for chromosomal replication or segregation. However, during the third targeting round, which aimed at knocking out the last switch region, a fourth copy of chromosome 1 that retained this region appeared in all clones analysed. This suggests that the persistence of this switch region is necessary for parasite survival. We then showed that the presence/absence of the switch region did not act upon the expression of a resistance marker gene inserted beforehand into the left gene cluster of the same chromosomal molecule. This result suggests that the presence of this 1.6-kb sequence is not necessary for the expression of all genes on chromosome 1.
Asunto(s)
Cromosomas/genética , Leishmania major/genética , Mitosis/genética , Animales , Deleción Cromosómica , Enzimas de Restricción del ADN/metabolismo , ADN Protozoario/genética , ADN Protozoario/metabolismo , Resistencia a Medicamentos/genética , Regulación de la Expresión Génica , Mutación , Transcripción Genética/genéticaRESUMEN
Leishmania and Trypanosoma are unicellular parasites that possess markedly original biological features as compared to other eukaryotes. The Leishmania genome displays a constitutive 'mosaic aneuploidy', whereas in Trypanosoma brucei, the megabase-sized chromosomes are diploid. We accurately analysed DNA replication parameters in three Leishmania species and Trypanosoma brucei as well as mouse embryonic fibroblasts (MEF). Active replication origins were visualized at the single molecule level using DNA molecular combing. More than one active origin was found on most DNA fibres, showing that the chromosomes are replicated from multiple origins. Inter-origin distances (IODs) were measured and found very large in trypanosomatids: the mean IOD was 160 kb in T. brucei and 226 kb in L. mexicana. Moreover, the progression of replication forks was faster than in any other eukaryote analyzed so far (mean velocity 1.9 kb/min in T. brucei and 2.4-2.6 kb/min in Leishmania). The estimated total number of active DNA replication origins in trypanosomatids is ~170. Finally, 14.4% of unidirectional replication forks were observed in T. brucei, in contrast to 1.5-1.7% in Leishmania and 4% in MEF cells. The biological significance of these original features is discussed.
Asunto(s)
Replicación del ADN , ADN Protozoario/genética , Fibroblastos/metabolismo , Leishmania/genética , Trypanosoma brucei brucei/genética , Animales , Línea Celular , Embrión de Mamíferos/citología , Ratones , Origen de RéplicaRESUMEN
Microtubules are subject to post-translational modifications, which are thought to have crucial roles in the function of complex microtubule-based organelles. Among these, polyglutamylation was relatively recently discovered, and was related to centrosome stability, axonemal maintenance and mobility, and neurite outgrowth. In trypanosomatids, parasitic protozoa where microtubules constitute the essential component of the cytoskeleton, the function of polyglutamylated microtubules is unknown. Here, in order to better understand the role of this conserved but highly divergent post-translational modification, we characterised glutamylation and putative polyglutamylases in these parasites. We showed that microtubules are intensely glutamylated in all stages of the cell cycle, including interphase. Moreover, a cell cycle-dependent gradient of glutamylation was observed along the cell anteroposterior axis, which might be related to active growth of the microtubule 'corset' during the cell cycle. We also identified two putative polyglutamylase proteins (among seven analysed here) which appeared to be clearly and directly involved in microtubule polyglutamylation in in vitro activity assays. Paradoxically, in view of the importance of tubulins and of their extensive glutamylation in these organisms, RNA interference-based knockdown of all these proteins had no effect on cell growth, suggesting either functional redundancy or, more likely, subtle roles such as function modulation or interaction with protein partners.
Asunto(s)
Microtúbulos/fisiología , Péptido Sintasas/metabolismo , Procesamiento Proteico-Postraduccional , Trypanosoma/enzimología , Trypanosoma/fisiología , Tubulina (Proteína)/metabolismo , Ciclo Celular , Supervivencia Celular , Técnicas de Silenciamiento del Gen , Péptido Sintasas/genética , Trypanosoma/metabolismoRESUMEN
OBJECTIVE: OPA1 mutations are responsible for more than half of autosomal dominant optic atrophy (ADOA), a blinding disease affecting the retinal ganglion neurons. In most patients the clinical presentation is restricted to the optic nerve degeneration, albeit in 20% of them, additional neuro-sensorial symptoms might be associated to the loss of vision, as frequently encountered in mitochondrial diseases. This study describes clinical and neuroradiological features of OPA1 patients. METHODS: Twenty two patients from 17 families with decreased visual acuity related to optic atrophy and carrying an OPA1 mutation were enrolled. Patients underwent neuro-ophthalmological examinations. Brain magnetic resonance imaging (T1, T2 and flair sequences) was performed on a 1.5-Tesla MR Unit. Twenty patients underwent 2-D proton spectroscopic imaging. RESULTS: Brain imaging disclosed abnormalities in 12 patients. Cerebellar atrophy mainly involving the vermis was observed in almost a quarter of the patients; other abnormalities included unspecific white matter hypersignal, hemispheric cortical atrophy, and lactate peak. Neurological examination disclosed one patient with a transient right hand motor deficit and ENT examination revealed hearing impairment in 6 patients. Patients with abnormal MRI were characterized by: (i) an older age (ii) more severe visual impairment with chronic visual acuity deterioration, and (iii) more frequent associated deafness. CONCLUSIONS: Our results demonstrate that brain imaging abnormalities are common in OPA1 patients, even in those with normal neurological examination. Lactate peak, cerebellar and cortical atrophies are consistent with the mitochondrial dysfunction related to OPA1 mutations and might result from widespread neuronal degeneration.
Asunto(s)
Encéfalo/patología , Imagen por Resonancia Magnética , Enfermedades Mitocondriales/patología , Atrofia Óptica Autosómica Dominante/patología , Adolescente , Atrofia , Niño , Preescolar , Femenino , GTP Fosfohidrolasas/genética , Pérdida Auditiva/genética , Humanos , Masculino , Enfermedades Mitocondriales/genética , Actividad Motora , Examen Neurológico , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/fisiopatología , Adulto JovenRESUMEN
The deletion of a 260-kb segment containing all the coding DNA sequences (CDS) of chromosome 1 of Leishmania major Friedlin strain was performed through homologous recombination during a transfection experiment. This allowed the selection of a mutant clone containing a linear extra chromosome sizing 155 kb (XC155). The structure of XC155 was determined by restriction analysis and DNA cloning and sequencing of the gel-purified chromosome: it is made of a 'mirror' inverted duplication of the 'right' end of chromosome 1a (approximately 25 kb at each end), and in its central part of a complex tandem amplification of the linearized transfection vector containing the hygromycin resistance gene (over approximately 105 kb). No sequence of the coding region of chromosome 1 (including the 1.6-kb 'switch' region) was found. By contrast, XC155 contains two large (approximately 13 kb) clusters of tandemly repeated subtelomeric sequences (272-bp 'satellite' DNA) as well as telomeric hexamer repeats. This extra chromosome was found to be mitotically stable after >150 generations without selective pressure in vitro. Two sequence elements are considered which may have an effect on mitotic stability and participate to centromeric function in this extra chromosome: the amplification of the input vector and the 272-bp 'satellite' DNA bound by telomeric repeats.
Asunto(s)
Cromosomas/genética , ADN Protozoario/genética , Leishmania major/genética , Mitosis/genética , Animales , Deleción Cromosómica , Genes Protozoarios/genética , Recombinación Genética , Telómero/genéticaRESUMEN
Chromosome fragmentation (CF) constitutes one means of manipulating eukaryotic genomes and provides a powerful tool for examining both the structure and function of chromosomes. During the past 15 yr, CF, which is based on the use of transfection, has been widely used in yeast and mammals to elucidate the functional elements required for normal chromosome maintenance. However, in view of the relatively late development of parasite genome projects, this strategy has only been used recently in parasites. Here, we describe basic methods for CF (except telomere-mediated fragmentation) experiments and analysis in Leishmania. Current limitations of this methodology are precisely the lack of knowledge of the nature of centromeres and autonomously replicating sequences in this and other protozoa, the poor understanding of precise recombination mechanisms, as well as the fact that the deletion of unknown genes essential to parasite survival may interfere with recombination events and chromosomal rearrangements. Still, this powerful method has enriched our basic knowledge of chromosomal structure and maintenance.