RESUMEN
BACKGROUND AND OBJECTIVE: The resurgence of severe and progressive silicosis among engineered stone benchtop industry workers is a global health crisis. We investigated the link between the physico-chemical characteristics of engineered stone dust and lung cell responses to understand components that pose the greatest risk. METHODS: Respirable dust from 50 resin-based engineered stones, 3 natural stones and 2 non-resin-based materials was generated and analysed for mineralogy, morphology, metals, resin, particle size and charge. Human alveolar epithelial cells and macrophages were exposed in vitro to dust and assessed for cytotoxicity and inflammation. Principal component analysis and stepwise linear regression were used to explore the relationship between engineered stone components and the cellular response. RESULTS: Cutting engineered stone generated fine particles of <600 nm. Crystalline silica was the main component with metal elements such as Ti, Cu, Co and Fe also present. There was some evidence to suggest differences in cytotoxicity (p = 0.061) and IL-6 (p = 0.084) between dust samples. However, IL-8 (CXCL8) and TNF-α levels in macrophages were clearly variable (p < 0.05). Quartz explained 11% of the variance (p = 0.019) in macrophage inflammation while Co and Al accounted for 32% of the variance (p < 0.001) in macrophage toxicity, suggesting that crystalline silica only partly explains the cell response. Two of the reduced-silica, non-engineered stone products induced considerable inflammation in macrophages. CONCLUSION: These data suggest that silica is not the only component of concern in these products, highlighting the caution required as alternative materials are produced in an effort to reduce disease risk.
Asunto(s)
Exposición Profesional , Silicosis , Humanos , Exposición Profesional/efectos adversos , Silicosis/etiología , Pulmón/patología , Dióxido de Silicio/toxicidad , Polvo/análisis , Inflamación/patologíaRESUMEN
We investigated the role(s) of the damage-inducible SOS response dinB and imuBC gene products in the generation of ciprofloxacin-resistance mutations in the important human opportunistic bacterial pathogen, Pseudomonas aeruginosa. We found that the overall numbers of ciprofloxacin resistant (CipR) mutants able to be recovered under conditions of selection were significantly reduced when the bacterial cells concerned carried a defective dinB gene, but could be elevated to levels approaching wild-type when these cells were supplied with the dinB gene on a plasmid vector; in turn, firmly establishing a role for the dinB gene product, error-prone DNA polymerase IV, in the generation of CipR mutations in P. aeruginosa. Further, we report that products of the SOS-regulated imuABC gene cassette of this organism, ImuB and the error-prone ImuC DNA polymerase, are also involved in generating CipR mutations in this organism, since the yields of CipR mutations were substantially decreased in imuB- or imuC-defective cells compared to wild-type. Intriguingly, we found that the mutability of a dinB-defective strain could not be rescued by overexpression of the imuBC genes. And similarly, overexpression of the dinB gene either only modestly or else failed to restore CipR mutations in imuB- or imuC-defective cells, respectively. Combined, these results indicated that the products of the dinB and imuBC genes were acting in the same pathway leading to the generation of CipR mutations in P. aeruginosa. In addition, we provide evidence indicating that the general stress response sigma factor σs, RpoS, is required for mutagenesis in this organism and is in part at least modulating the dinB (DNA polymerase IV)-dependent mutational process. Altogether, these data provide further insight into the complexity and multifaceted control of the mutational mechanism(s) contributing to the generation of ciprofloxacin-resistance mutations in P. aeruginosa.