Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 176(4): 913-927.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30686581

RESUMEN

Tissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.


Asunto(s)
Miocitos Cardíacos/citología , Técnicas de Cultivo de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Potenciales de Acción , Diferenciación Celular , Células Cultivadas , Fenómenos Electrofisiológicos , Humanos , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Miocardio/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Tejidos/métodos
2.
Arterioscler Thromb Vasc Biol ; 40(5): 1325-1339, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32212852

RESUMEN

OBJECTIVE: Elastin gene deletion or mutation leads to arterial stenoses due to vascular smooth muscle cell (SMC) proliferation. Human induced pluripotent stem cells-derived SMCs can model the elastin insufficiency phenotype in vitro but show only partial rescue with rapamycin. Our objective was to identify drug candidates with superior efficacy in rescuing the SMC phenotype in elastin insufficiency patients. Approach and Results: SMCs generated from induced pluripotent stem cells from 5 elastin insufficiency patients with severe recurrent vascular stenoses (3 Williams syndrome and 2 elastin mutations) were phenotypically immature, hyperproliferative, poorly responsive to endothelin, and exerted reduced tension in 3-dimensional smooth muscle biowires. Elastin mRNA and protein were reduced in SMCs from patients compared to healthy control SMCs. Fourteen drug candidates were tested on patient SMCs. Of the mammalian target of rapamycin inhibitors studied, everolimus restored differentiation, rescued proliferation, and improved endothelin-induced calcium flux in all patient SMCs except one Williams syndrome. Of the calcium channel blockers, verapamil increased SMC differentiation and reduced proliferation in Williams syndrome patient cells but not in elastin mutation patients and had no effect on endothelin response. Combination treatment with everolimus and verapamil was not superior to everolimus alone. Other drug candidates had limited efficacy. CONCLUSIONS: Everolimus caused the most consistent improvement in SMC differentiation, proliferation and in SMC function in patients with both syndromic and nonsyndromic elastin insufficiency, and offers the best candidate for drug repurposing for treatment of elastin insufficiency associated vasculopathy.


Asunto(s)
Arteriopatías Oclusivas/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Elastina/deficiencia , Everolimus/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Síndrome de Williams/metabolismo , Arteriopatías Oclusivas/genética , Arteriopatías Oclusivas/metabolismo , Arteriopatías Oclusivas/patología , Estudios de Casos y Controles , Línea Celular , Constricción Patológica , Elastina/genética , Femenino , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Lactante , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Mutación , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fenotipo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Síndrome de Williams/complicaciones , Síndrome de Williams/genética
3.
Nat Mater ; 16(10): 1038-1046, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28805824

RESUMEN

Despite great progress in engineering functional tissues for organ repair, including the heart, an invasive surgical approach is still required for their implantation. Here, we designed an elastic and microfabricated scaffold using a biodegradable polymer (poly(octamethylene maleate (anhydride) citrate)) for functional tissue delivery via injection. The scaffold's shape memory was due to the microfabricated lattice design. Scaffolds and cardiac patches (1 cm × 1 cm) were delivered through an orifice as small as 1 mm, recovering their initial shape following injection without affecting cardiomyocyte viability and function. In a subcutaneous syngeneic rat model, injection of cardiac patches was equivalent to open surgery when comparing vascularization, macrophage recruitment and cell survival. The patches significantly improved cardiac function following myocardial infarction in a rat, compared with the untreated controls. Successful minimally invasive delivery of human cell-derived patches to the epicardium, aorta and liver in a large-animal (porcine) model was achieved.


Asunto(s)
Plásticos Biodegradables/química , Células Inmovilizadas , Ensayo de Materiales , Miocitos Cardíacos , Andamios del Tejido/química , Aloinjertos , Animales , Aorta/metabolismo , Aorta/patología , Aorta/cirugía , Supervivencia Celular , Células Inmovilizadas/metabolismo , Células Inmovilizadas/patología , Células Inmovilizadas/trasplante , Elasticidad , Xenoinjertos , Humanos , Hígado/metabolismo , Hígado/patología , Hígado/cirugía , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/cirugía , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/trasplante , Pericardio/metabolismo , Pericardio/patología , Pericardio/cirugía , Ratas , Porcinos
4.
Nat Mater ; 15(6): 669-78, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26950595

RESUMEN

We report the fabrication of a scaffold (hereafter referred to as AngioChip) that supports the assembly of parenchymal cells on a mechanically tunable matrix surrounding a perfusable, branched, three-dimensional microchannel network coated with endothelial cells. The design of AngioChip decouples the material choices for the engineered vessel network and for cell seeding in the parenchyma, enabling extensive remodelling while maintaining an open-vessel lumen. The incorporation of nanopores and micro-holes in the vessel walls enhances permeability, and permits intercellular crosstalk and extravasation of monocytes and endothelial cells on biomolecular stimulation. We also show that vascularized hepatic tissues and cardiac tissues engineered by using AngioChips process clinically relevant drugs delivered through the vasculature, and that millimetre-thick cardiac tissues can be engineered in a scalable manner. Moreover, we demonstrate that AngioChip cardiac tissues implanted with direct surgical anastomosis to the femoral vessels of rat hindlimbs establish immediate blood perfusion.


Asunto(s)
Materiales Biocompatibles/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Dispositivos Laboratorio en un Chip , Hígado/metabolismo , Monocitos/metabolismo , Miocardio/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Anastomosis Quirúrgica , Animales , Fémur/irrigación sanguínea , Fémur/citología , Fémur/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Hígado/irrigación sanguínea , Hígado/citología , Monocitos/citología , Miocardio/metabolismo , Porosidad , Ratas , Ratas Endogámicas Lew , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
5.
Biochem Biophys Res Commun ; 473(3): 698-703, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-26626076

RESUMEN

Wingless-related integration site (Wnt) signaling has proven to be a fundamental mechanism in cardiovascular development as well as disease. Understanding its particular role in heart formation has helped to develop pluripotent stem cell differentiation protocols that produce relatively pure cardiomyocyte populations. The resultant cardiomyocytes have been used to generate heart tissue for pharmaceutical testing, and to study physiological and disease states. Such protocols in combination with induced pluripotent stem cell technology have yielded patient-derived cardiomyocytes that exhibit some of the hallmarks of cardiovascular disease and are therefore being used to model disease states. While FDA approval of new treatments typically requires animal experiments, the burgeoning field of tissue engineering could act as a replacement. This would necessitate the generation of reproducible three-dimensional cardiac tissues in a well-controlled environment, which exhibit native heart properties, such as cellular density, composition, extracellular matrix composition, and structure-function. Such tissues could also enable the further study of Wnt signaling. Furthermore, as Wnt signaling has been found to have a mechanistic role in cardiac pathophysiology, e.g. heart attack, hypertrophy, atherosclerosis, and aortic stenosis, its strategic manipulation could provide a means of generating reproducible and specific, physiological and pathological cardiac models.


Asunto(s)
Regulación de la Expresión Génica , Cardiopatías/terapia , Corazón/fisiopatología , Miocardio/metabolismo , Ingeniería de Tejidos/métodos , Proteínas Wnt/metabolismo , Animales , Estenosis de la Válvula Aórtica/fisiopatología , Diferenciación Celular , Corazón/fisiología , Humanos , Transducción de Señal , Porcinos , beta Catenina/metabolismo
6.
ACS Biomater Sci Eng ; 3(9): 1911-1921, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440549

RESUMEN

Animal models have been instrumental in providing insight into the molecular basis of disease. While such information has been successfully applied to the study of human disease, this translation would be significantly strengthened by the availability of models based on human cells. This would be particularly important for cardiovascular disease, as the physiology of human cardiomyocytes (CMs) differs significantly from rodents. Here, we have generated a three-dimensional human engineered cardiac tissue, termed biowire, from human embryonic stem cell-derived CMs to investigate the effects of chronic (7 day) treatment with isoproterenol, endothelin-1, or angiotensin II. We show that biowires chronically treated with either isoproterenol, endothelin-1, or angiotensin II have disrupted myofibril alignment and significantly reduced force of contraction. Isoproterenol-treated biowires have upregulated brain natriuretic peptide and atrial natriuretic peptide gene expression. Endothelin-1 and angiotensin II-treated biowires demonstrated a significantly increased cell size. Endothelin-1-treated biowires exhibited increased cardiac troponin secretion into the culture media. This demonstrates that human biowires treated for 7 days with isoproterenol, angiotensin II, or endothelin-1 exhibit some changes compatible with hypertrophic cardiomyopathy.

7.
Lab Chip ; 14(5): 869-82, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24352498

RESUMEN

Tissue engineering enables the generation of three-dimensional (3D) functional cardiac tissue for pre-clinical testing in vitro, which is critical for new drug development. However, current tissue engineering methods poorly recapitulate the architecture of oriented cardiac bundles with supporting capillaries. In this study, we designed a microfabricated bioreactor to generate 3D micro-tissues, termed biowires, using both primary neonatal rat cardiomyocytes and human embryonic stem cell (hESC) derived cardiomyocytes. Perfusable cardiac biowires were generated with polytetrafluoroethylene (PTFE) tubing template, and were integrated with electrical field stimulation using carbon rod electrodes. To demonstrate the feasibility of this platform for pharmaceutical testing, nitric oxide (NO) was released from perfused sodium nitroprusside (SNP) solution and diffused through the tubing. The NO treatment slowed down the spontaneous beating of cardiac biowires based on hESC derived cardiomyocytes and degraded the myofibrillar cytoskeleton of the cardiomyocytes within the biowires. The biowires were also integrated with electrical stimulation using carbon rod electrodes to further improve phenotype of cardiomyocytes, as indicated by organized contractile apparatus, higher Young's modulus, and improved electrical properties. This microfabricated platform provides a unique opportunity to assess pharmacological effects on cardiac tissue in vitro by perfusion in a cardiac bundle model, which could provide improved physiological relevance.


Asunto(s)
Materiales Biocompatibles/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Ingeniería de Tejidos , Animales , Materiales Biocompatibles/química , Reactores Biológicos , Células Cultivadas , Módulo de Elasticidad , Estimulación Eléctrica , Electrodos , Células Madre Embrionarias/citología , Geles/química , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Perfusión , Politetrafluoroetileno/química , Ratas
8.
Biofabrication ; 6(2): 024113, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24876342

RESUMEN

We describe here a bioreactor capable of applying electrical field stimulation in conjunction with static strain and on-line force of contraction measurements. It consisted of a polydimethylsiloxane (PDMS) tissue chamber and a pneumatically driven stretch platform. The chamber contained eight tissue microwells (8.05 mm in length and 2.5 mm in width) with a pair of posts (2.78 mm in height and 0.8 mm in diameter) in each well to serve as fixation points and for measurements of contraction force. Carbon rods, stimulating electrodes, were placed into the PDMS chamber such that one pair stimulated four microwells. For feasibility studies, neonatal rat cardiomyocytes were seeded in collagen gels into the microwells. Following 3 days of gel compaction, electrical field stimulation at 3-4 V cm(-1) and 1 Hz, mechanical stimulation of 5% static strain or electromechanical stimulation (field stimulation at 3-4 V cm(-1), 1 Hz and 5% static strain) were applied for 3 days. Cardiac microtissues subjected to electromechanical stimulation exhibited elevated amplitude of contraction and improved sarcomere structure as evidenced by sarcomeric α-actinin, actin and troponin T staining compared to microtissues subjected to electrical or mechanical stimulation alone or non-stimulated controls. The expression of atrial natriuretic factor and brain natriuretic peptide was also elevated in the electromechanically stimulated group.


Asunto(s)
Estimulación Eléctrica/instrumentación , Miocitos Cardíacos/fisiología , Ingeniería de Tejidos/instrumentación , Animales , Estimulación Eléctrica/métodos , Diseño de Equipo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/citología , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos/métodos
9.
J Tissue Eng ; 3(1): 2041731412455354, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22919458

RESUMEN

Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06) but less than half of the native postnatal day 12 (0.90 ± 0.06) and adult (0.91 ± 0.04) myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal that the application of environmental cues produces tissue with structural features more representative of age-matched native myocardium than adult myocardium. We suggest that the presented approach can be applied to quantitatively characterize developmental processes and mechanisms in engineered tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA