Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(46): 18779-18788, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37933554

RESUMEN

A new class of antimony(III) corroles has been described. The photophysical properties of these newly synthesized tetrakis(thiocyano)corrolatoantimony(III) derivatives having four SCN groups on the bipyrrole unit of corrole are drastically altered compared to their ß-unsubstituted corrolatoantimony(III) analogues. The UV-vis and emission spectra of tetrakis(thiocyano)corrolatoantimony(III) derivatives are significantly red-shifted (roughly 30-40 nm) in comparison with their ß-unsubstituted corrolatoantimony(III) derivatives. The Q bands are significantly strengthened. The intensity of the most prominent Q band is roughly 70% that of the Soret band and absorbs strongly at the far-red region, i.e., at 700-720 nm. These molecules emit light in the near-infrared region (700-900 nm). Tetrakis(thiocyano)corrolatoantimony(III) undergoes electrochemical anodic oxidation to form SbV═O species, which facilitates electrocatalytic oxygen evolution reaction (OER) and the activation of benzylic C-H to produce benzoic acid selectively. Under optimized conditions, SbIII-corrole@NF (NF = nickel foam) required an overpotential of 380 mV to reach a 50 mA cm-2 current density, comparable with those of other transition-metal-based complexes. On the other hand, replacing the anodic OER with benzyl alcohol oxidation lowered the required potential by 150 mV (at 300 mA cm-2) to improve the energy efficiency of the electrochemical process.

2.
ACS Omega ; 7(32): 28138-28147, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35990448

RESUMEN

Metal complexes bearing nitrido ligands (M≡N) are at the forefront of current scientific research due to their resemblances with the metal complexes involved in the nitrogen fixation reactions. An oxo(corrolato)chromium(V) complex was used as a precursor complex for the facile synthesis of a new nitrido(corrolato)chromium(V) complex. The nitrido(corrolato)chromium(V) complex was characterized by various spectroscopic techniques. Density functional theory (DFT) calculations were performed on the nitrido(corrolato)chromium(V) complex to assign the vibrational and electronic transitions of this complex. The chromium-nitrogen (nitrido) bond distance obtained in the DFT-optimized structure is 1.530 Å and matches well with the earlier reported authentic Cr≡N bond distances obtained from the single-crystal X-ray diffraction data. This nitrido(corrolato)chromium(V) compound exhibited a sharp Soret band at 438 nm and a Q band at 608 nm. DFT calculations deliver that the origin of the bands at 438 and 608 nm is due to the intraligand charge transfer transitions. The nitrido(corrolato)chromium(V) complex showed one reversible oxidation and one reversible reduction couple at +0.53 and -0.06 V, respectively, vs the Ag/AgCl reference electrode. The simulation of the electron paramagnetic resonance data of the nitrido(corrolato)chromium(V) compound provided the following parameters: g iso = 1.987, A 53Cr = 26 G, and A 14N = 2.71 G. From all these analyses, we can conclude that the electronic configuration in the native state of nitrido(corrolato)chromium(V) can be best described as [(cor3-)CrV(N3-)]-. Reactions of nitrido(corrolato)chromium(V) with the chloro(porphyrinato)chromium(III) complex resulted in a complete intermetal N atom transfer reaction between chromium corrole and chromium porphyrin complexes. A second-order rate constant of 4.29 ± 0.10 M-1 s-1 was obtained for this reaction. It was also proposed that this reaction proceeds via a bimetallic µ-nitrido intermediate.

3.
ACS Omega ; 6(35): 22922-22936, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34514263

RESUMEN

A new methodology for porphyrin synthesis has been developed. This is a simple two-step protocol. The first step involves the condensation of pyrrole and aldehyde in an H2O-MeOH mixture using HCl. The obtained precipitate from the first step was dissolved in reagent-grade dimethylformamide (DMF) and refluxed for 1.5 h, followed by stirring overnight in the air at room temperature. Subsequent purification through column chromatography or crystallization resulted in the formation of pure porphyrins. Advantageously, this methodology does not need any expensive chemicals such as 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), chloranil, and so forth as an oxidizing agent. This reaction also does not require a large volume of dry chlorinated solvents. Contrary to the reported methodologies, which are mostly ineffective in the gram-scale production of porphyrins, the present method perfectly caters to the need for gram-scale production of porphyrins. In essence, the current methodology does not represent the synthesis having the highest yield in the literature. However, it represents the easiest and cheapest synthesis of porphyrin on a large scale to obtain a reproducible yield of 10-40% with high purity. In a few of the examples, even column chromatography is not necessary. A simple crystallization technique will be sufficient to generate the desired porphyrins in good yields.

4.
Nanoscale Adv ; 2(1): 166-170, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36134003

RESUMEN

Herein we demonstrate a synthetic protocol for the regioselective thiocyanation of corroles. To the best of our knowledge, thiocyanato appended corrole has never been reported earlier. The resulting thiocyanato appended corrole turned out to be a good corrole based precursor for the facile synthesis of thiol protected gold nanoparticles (Au NPs). The ligand system acts as a good bidentate framework and passivates the gold surface. A strong electronic interaction between the corrole and the gold nanoparticles is manifested by their unique photo physical properties and it also confirms that the binding through ß-substitutions has a more pronounced effect even though the corrole rings are face-off to the gold surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA