Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Hum Mol Genet ; 29(3): 459-470, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943016

RESUMEN

Autism spectrum disorders are associated with some degree of developmental regression in up to 30% of all cases. Rarely, however, is the regression so extreme that a developmentally advanced young child would lose almost all ability to communicate and interact with her surroundings. We applied trio whole exome sequencing to a young woman who experienced extreme developmental regression starting at 2.5 years of age and identified compound heterozygous nonsense mutations in TMPRSS9, which encodes for polyserase-1, a transmembrane serine protease of poorly understood physiological function. Using semiquantitative polymerase chain reaction, we showed that Tmprss9 is expressed in various mouse tissues, including the brain. To study the consequences of TMPRSS9 loss of function on the mammalian brain, we generated a knockout mouse model. Through a battery of behavioral assays, we found that Tmprss9-/- mice showed decreased social interest and social recognition. We observed a borderline recognition memory deficit by novel object recognition in aged Tmprss9-/- female mice, but not in aged Tmprss9-/- male mice or younger adult Tmprss9-/- mice in both sexes. This study provides evidence to suggest that loss of function variants in TMPRSS9 are related to an autism spectrum disorder. However, the identification of more individuals with similar phenotypes and TMPRSS9 loss of function variants is required to establish a robust gene-disease relationship.


Asunto(s)
Trastornos de Ansiedad/patología , Trastorno del Espectro Autista/patología , Codón sin Sentido , Secuenciación del Exoma/métodos , Proteínas de la Membrana/metabolismo , Trastornos de la Memoria/patología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/fisiología , Adolescente , Adulto , Animales , Trastornos de Ansiedad/etiología , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Trastornos de la Memoria/etiología , Ratones , Ratones Noqueados , Actividad Motora , Fenotipo , Serina Endopeptidasas/genética
2.
Proc Natl Acad Sci U S A ; 116(8): 2977-2986, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30728291

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome that causes tumor formation in multiple organs. TSC is caused by inactivating mutations in the genes encoding TSC1/2, negative regulators of the mammalian target of rapamycin complex 1 (mTORC1). Diminished TSC function is associated with excess glycogen storage, but the causative mechanism is unknown. By studying human and mouse cells with defective or absent TSC2, we show that complete loss of TSC2 causes an increase in glycogen synthesis through mTORC1 hyperactivation and subsequent inactivation of glycogen synthase kinase 3ß (GSK3ß), a negative regulator of glycogen synthesis. Specific TSC2 pathogenic mutations, however, result in elevated glycogen levels with no changes in mTORC1 or GSK3ß activities. We identify mTORC1-independent lysosomal depletion and impairment of autophagy as the driving causes underlying abnormal glycogen storage in TSC irrespective of the underlying mutation. The defective autophagic degradation of glycogen is associated with abnormal ubiquitination and degradation of essential proteins of the autophagy-lysosome pathway, such as LC3 and lysosomal associated membrane protein 1 and 2 (LAMP1/2) and is restored by the combined use of mTORC1 and Akt pharmacological inhibitors. In complementation to current models that place mTORC1 as the central therapeutic target for TSC pathogenesis, our findings identify mTORC1-independent pathways that are dysregulated in TSC and that should therefore be taken into account in the development of a therapeutic treatment.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno/biosíntesis , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Esclerosis Tuberosa/genética , Animales , Autofagia/genética , Glucógeno/genética , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Lisosomas/genética , Lisosomas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Mutación , Proteolisis , Transducción de Señal , Esclerosis Tuberosa/patología , Ubiquitinación/genética
3.
J Neurochem ; 148(5): 573-589, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30092616

RESUMEN

This review focuses on the pathways that regulate lysosome biogenesis and that are implicated in numerous degenerative storage diseases, including lysosomal storage disorders and late-onset neurodegenerative diseases. Lysosomal proteins are synthesized in the endoplasmic reticulum and trafficked to the endolysosomal system through the secretory route. Several receptors have been characterized that execute post-Golgi trafficking of lysosomal proteins. Some of them recognize their cargo proteins based on specific amino acid signatures, others based on a particular glycan modification that is exclusively found on lysosomal proteins. Nearly all receptors serving lysosome biogenesis are under the transcriptional control of transcription factor EB (TFEB), a master regulator of the lysosomal system. TFEB coordinates the expression of lysosomal hydrolases, lysosomal membrane proteins, and autophagy proteins in response to pathways sensing lysosomal stress and the nutritional conditions of the cell among other stimuli. TFEB is primed for activation in lysosomal storage disorders but surprisingly its function is impaired in some late-onset neurodegenerative storage diseases like Alzheimer's and Parkinson's, because of specific detrimental interactions that limit TFEB expression or activation. Thus, disrupted TFEB function presumably plays a role in the pathogenesis of these diseases. Multiple studies in animal models of degenerative storage diseases have shown that exogenous expression of TFEB and pharmacological activation of endogenous TFEB attenuate disease phenotypes. These results highlight TFEB-mediated enhancement of lysosomal biogenesis and function as a candidate strategy to counteract the progression of these diseases. This article is part of the Special Issue "Lysosomal Storage Disorders".


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Lisosomas , Biogénesis de Organelos , Animales , Humanos
4.
Cell Biol Int ; 38(4): 511-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24375813

RESUMEN

Protein disulfide isomerase (PDI), an important endoplasmic reticulum-resident oxidoreductase chaperone can bind to estrogens as well as intact with its receptor proteins [i.e. estrogen receptors (ER) α and ß]. It has been postulated that PDI also acts as an intracellular 17ß-estradiol (E2)-binding protein that transports and accumulates E2 in live cells. Drop in E2 level promotes dissociation of E2 from PDI and released in cytosol; the released E2 can augment estrogen receptor-mediated transcriptional activity and mitogenic action in cultured cells by modulating the ERß/ERα ratio. In this study, we observed rotenone-induced damage to PDI leads to significant increase in ERß/ERα ratio by down-regulating ERα and up-regulating ERß. We demonstrated that nitrosative stress induced disruption of the cellular estrogenic status can be prevented through diphenyl difluoroketone (EF24, curcumin analog) intervention by protecting PDI from reactive oxygen species (ROS)-induced damage. Together, our study suggests that both PDI and EF24 can play a vital role in maintaining cellular estrogenic homeostasis.


Asunto(s)
Compuestos de Bencilideno/farmacología , Estradiol/metabolismo , Piperidonas/farmacología , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Rotenona/toxicidad , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Regulación hacia Abajo/efectos de los fármacos , Receptor alfa de Estrógeno/análisis , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Microscopía Confocal , Estrés Oxidativo/efectos de los fármacos , Proteína Disulfuro Isomerasas/análisis , Proteína Disulfuro Isomerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
Biochem Biophys Res Commun ; 426(3): 438-44, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22974977

RESUMEN

Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-tagged synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-ß-hydroxybutyrate (NaßHB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that NaßHB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Apoptosis/efectos de los fármacos , Proteínas Portadoras/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/farmacología , Nitratos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Portadoras/análisis , Caspasas/metabolismo , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Enfermedades Mitocondriales/metabolismo , Necrosis , Proteínas del Tejido Nervioso/análisis , Nitrosación , Enfermedad de Parkinson/metabolismo , Pliegue de Proteína/efectos de los fármacos , Rotenona/farmacología
6.
Biochem Biophys Res Commun ; 404(1): 324-9, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21130735

RESUMEN

Nitrosative stress has recently been demonstrated as a causal in a select sporadic variant of Parkinson's (PD) and Alzheimer's (AD) diseases. Specifically, elevated levels of NO disrupt the redox activity of protein-disulfide isomerase, a key endoplasmic reticulum-resident chaperone by S-nitroso modification of its redox-active cysteines. This leads to accumulation of misfolded AD- and PD-specific protein debris. We have recently demonstrated in vitro that polyphenolic phytochemicals, curcumin and masoprocol, can rescue S-nitroso-PDI formation by scavenging NOx. In this study, using dopaminergic SHSY-5Y cells, we have monitored the aggregation of green-fluorescent protein (GFP)-tagged synphilin-1 (a known constituent of PD Lewy neurites) as a function of rotenone-induced nitrosative stress. Importantly, we demonstrate a marked decrease in synphilin-1 aggregation when the cell line is previously incubated with 3,5-bis(2-flurobenzylidene) piperidin-4-one (EF-24), a curcumin analogue, prior to rotenone insult. Furthermore, our data also reveal that rotenone attenuates PDI expression in the same cell line, a phenomenon that can be mitigated through EF-24 intervention. Together, these results suggest that EF-24 can exert neuroprotective effects by ameliorating nitrosative stress-linked damage to PDI and the associated onset of PD and AD. Essentially, EF-24 can serve as a scaffold for the design and development of PD and AD specific prophylactics.


Asunto(s)
Compuestos de Bencilideno/farmacología , Curcumina/análogos & derivados , Depuradores de Radicales Libres/farmacología , Cuerpos de Lewy/efectos de los fármacos , Óxido Nítrico/metabolismo , Enfermedad de Parkinson/metabolismo , Piperidonas/farmacología , Estrés Fisiológico , Compuestos de Bencilideno/química , Proteínas Portadoras/análisis , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Curcumina/farmacología , Flavonoides/química , Flavonoides/farmacología , Depuradores de Radicales Libres/química , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cuerpos de Lewy/metabolismo , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/metabolismo , Fenoles/química , Fenoles/farmacología , Piperidonas/química , Polifenoles , Especies Reactivas de Oxígeno/metabolismo
7.
Biochemistry ; 49(29): 6282-9, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20568731

RESUMEN

Protein disulfide isomerase (PDI), the chief endoplasmic reticulum (ER) resident oxidoreductase chaperone, is known to catalyze the maturation of disulfide bond-containing proteins primarily through oxidation and isomerization functions. The rate-determining step in the oxidative regeneration path of disulfide bond-containing proteins generally couples chemical thiol-disulfide-exchange reactions to a physical conformational folding reaction. We have determined the impact of PDI and its subdomains on the rate-determining step in ribonuclease A folding and on the physical structure-forming step of select ER-processed proteins including RNase A. This was facilitated through application of a novel chemical tool to exclusively populate native disulfide-containing intermediates in unstructured forms. The described biochemical inroad permits a deconvoluted study of the physical half-process in the rate-determining step from its chemical counterpart. Analysis of folding kinetics of RNase A and other proteins reveals that the highly evolved oxidoreductase activity of PDI masks its chaperone-like activity, impedes conformational folding of ER-processed proteins, and limits its potential to accelerate the rate-determining step in oxidative regeneration. Implications of the heretofore unknown and anomalous self-limiting behavior of PDI are discussed in the context of oxidative maturation and misfolding in vivo.


Asunto(s)
Retículo Endoplásmico/enzimología , Chaperonas Moleculares/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Ribonucleasa Pancreática/metabolismo , Chaperonas Moleculares/química , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Ribonucleasa Pancreática/química
8.
Biochem Biophys Res Commun ; 392(4): 567-71, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20097158

RESUMEN

Protein disulfide isomerase (PDI), the chief endoplasmic reticulum (ER) resident oxidoreductase chaperone that catalyzes maturation of disulfide-bond-containing proteins is involved in the pathogenesis of both Parkinson's (PD) and Alzheimer's (AD) diseases. S-nitrosylation of PDI cysteines due to nitrosative stress is associated with cytosolic debris accumulation and Lewy-body aggregates in PD and AD brains. We demonstrate that the polyphenolic phytochemicals curcumin and masoprocol can rescue PDI from becoming S-nitrosylated and maintain its catalytic function under conditions mimicking nitrosative stress by forming stable NOx adducts. Furthermore, both polyphenols intervene to prevent the formation of PDI-resistant polymeric misfolded protein forms that accumulate upon exposure to oxidative stress. Our study suggests that curcumin and masoprocol can serve as lead-candidate prophylactics for reactive oxygen species induced chaperone damage, protein misfolding and neurodegenerative disease; importantly, they can play a vital role in sustaining traffic along the ER's secretory pathway by preserving functional integrity of PDI.


Asunto(s)
Curcumina/farmacología , Retículo Endoplásmico/enzimología , Masoprocol/farmacología , Enfermedades Neurodegenerativas/enzimología , Proteína Disulfuro Isomerasas/metabolismo , Humanos , Óxido Nítrico/metabolismo , Nitrosación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
9.
J Clin Invest ; 130(8): 4118-4132, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32597833

RESUMEN

Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and transferred to the Golgi complex by interaction with the Batten disease protein CLN8 (ceroid lipofuscinosis, neuronal, 8). Here we investigated the relationship of this pathway with CLN6, an ER-associated protein of unknown function that is defective in a different Batten disease subtype. Experiments focused on protein interaction and trafficking identified CLN6 as an obligate component of a CLN6-CLN8 complex (herein referred to as EGRESS: ER-to-Golgi relaying of enzymes of the lysosomal system), which recruits lysosomal enzymes at the ER to promote their Golgi transfer. Mutagenesis experiments showed that the second luminal loop of CLN6 is required for the interaction of CLN6 with the enzymes but dispensable for interaction with CLN8. In vitro and in vivo studies showed that CLN6 deficiency results in inefficient ER export of lysosomal enzymes and diminished levels of the enzymes at the lysosome. Mice lacking both CLN6 and CLN8 did not display aggravated pathology compared with the single deficiencies, indicating that the EGRESS complex works as a functional unit. These results identify CLN6 and the EGRESS complex as key players in lysosome biogenesis and shed light on the molecular etiology of Batten disease caused by defects in CLN6.


Asunto(s)
Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Lisosomas/enzimología , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Retículo Endoplásmico/genética , Aparato de Golgi/genética , Lisosomas/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Lipofuscinosis Ceroideas Neuronales/enzimología , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Transporte de Proteínas/genética
10.
Sci Rep ; 9(1): 15935, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685878

RESUMEN

MAGEL2 is a maternally imprinted, paternally expressed gene, located in the Prader-Willi region of human chromosome 15. Pathogenic variants in the paternal copy of MAGEL2 cause Schaaf-Yang syndrome (SHFYNG), a neurodevelopmental disorder related to Prader-Willi syndrome (PWS). Patients with SHFYNG, like PWS, manifest neonatal hypotonia, feeding difficulties, hypogonadism, intellectual disability and sleep apnea. However, individuals with SHFYNG have joint contractures, greater cognitive impairment, and higher prevalence of autism than seen in PWS. Additionally, SHFYNG is associated with a lower prevalence of hyperphagia and obesity than PWS. Previous studies have shown that truncating variants in MAGEL2 lead to SHFYNG. However, the molecular pathways involved in manifestation of the SHFYNG disease phenotype are still unknown. Here we show that a Magel2 null mouse model and fibroblast cell lines from individuals with SHFYNG exhibit increased expression of mammalian target of rapamycin (mTOR) and decreased autophagy. Additionally, we show that SHFYNG induced pluripotent stem cell (iPSC)-derived neurons exhibit impaired dendrite formation. Alterations in SHFYNG patient fibroblast lines and iPSC-derived neurons are rescued by treatment with the mTOR inhibitor rapamycin. Collectively, our findings identify mTOR as a potential target for the development of pharmacological treatments for SHFYNG.


Asunto(s)
Autofagia , Síndrome de Prader-Willi/patología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia/efectos de los fármacos , Dendritas/fisiología , Modelos Animales de Enfermedad , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Síndrome de Prader-Willi/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN Largo no Codificante/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Regulación hacia Arriba
11.
Clin Cancer Drugs ; 5(1): 28-41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30443489

RESUMEN

BACKGROUND: The migration of tumor cells is critical in spreading cancers through the lymphatic nodes and circulatory systems. Although arachidonic acid (AA) and its soluble metabolites have been shown to induce the migration of breast and colon cancer cells, the mechanism by which it induces such migration has not been fully understood. OBJECTIVE: The effect of AA on migratory responses of the MDA-MB-231 cell line (a triple-negative breast cancer cell) was examined and compared with MCF-7 (estrogen-receptor positive) breast cancer cells to elucidate the mechanism of AA-induced migration. METHODS: Migrations of breast cancer cells were examined with the help of wound-healing assays. AA-induced eicosanoid synthesis was monitored by RP-HPLC. Cellular localizations of lipoxygenase and lipid rafts were assessed by immunoblot and confocal microscopy. RESULTS: AA treatment stimulated the synthesis of leukotriene B4 (LTB4) and HETE-8, but lowered the levels of prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and HETE-5 in MDA-MB-231 cells. Further analysis indicated that AA increased the expression of 5-lipoxygenase (5-LOX) in this cell line and inhibiting its expression by small molecule inhibitors lowered the production of LTB4 and reduced migration. In contrast, MCF-7 cells did not show any appreciable changes in eicosanoid synthesis, 5-LOX expression, or cellular migration. CONCLUSION: Our results suggest that AA treatment activates the BLT1 receptor (present in membrane microdomains) and stimulates the synthesis of LTB4 production, which is likely to be associated with the migration of MDA-MB-231 cells.

12.
Elife ; 72018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29381135

RESUMEN

Skeletal muscle from mdx mice is characterized by increased Nox2 ROS, altered microtubule network, increased muscle stiffness, and decreased muscle/respiratory function. While microtubule de-tyrosination has been suggested to increase stiffness and Nox2 ROS production in isolated single myofibers, its role in altering tissue stiffness and muscle function has not been established. Because Nox2 ROS production is upregulated prior to microtubule network alterations and ROS affect microtubule formation, we investigated the role of Nox2 ROS in diaphragm tissue microtubule organization, stiffness and muscle/respiratory function. Eliminating Nox2 ROS prevents microtubule disorganization and reduces fibrosis and muscle stiffness in mdx diaphragm. Fibrosis accounts for the majority of variance in diaphragm stiffness and decreased function, implicating altered extracellular matrix and not microtubule de-tyrosination as a modulator of diaphragm tissue function. Ultimately, inhibiting Nox2 ROS production increased force and respiratory function in dystrophic diaphragm, establishing Nox2 as a potential therapeutic target in Duchenne muscular dystrophy.


Asunto(s)
Diafragma/patología , Diafragma/fisiopatología , Microtúbulos/metabolismo , Distrofia Muscular de Duchenne/patología , NADPH Oxidasa 2/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos mdx , Especies Reactivas de Oxígeno/metabolismo
13.
Nat Commun ; 9(1): 4351, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341294

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell survival and autophagy, and its activity is regulated by amino acid availability. Rag GTPase-GATOR1 interactions inhibit mTORC1 in the absence of amino acids, and GATOR1 release and activation of RagA/B promotes mTORC1 activity in the presence of amino acids. However, the factors that play a role in Rag-GATOR1 interaction are still poorly characterized. Here, we show that the tyrosine kinase Src is crucial for amino acid-mediated activation of mTORC1. Src acts upstream of the Rag GTPases by promoting dissociation of GATOR1 from the Rags, thereby determining mTORC1 recruitment and activation at the lysosomal surface. Accordingly, amino acid-mediated regulation of Src/mTORC1 modulates autophagy and cell size expansion. Finally, Src hyperactivation overrides amino acid signaling in the activation of mTORC1. These results shed light on the mechanisms underlying pathway dysregulation in many cancer types.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Familia-src Quinasas/fisiología , Autofagia , Ciclo Celular , Transducción de Señal , Familia-src Quinasas/metabolismo
14.
Sci Rep ; 7(1): 4174, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28646232

RESUMEN

Tuberous sclerosis (TS) is a multi-organ autosomal dominant disorder that is best characterized by neurodevelopmental deficits and the presence of benign tumors. TS pathology is caused by mutations in tuberous sclerosis complex (TSC) genes and is associated with insulin resistance, decreased glycogen synthase kinase 3ß (GSK3ß) activity, activation of the mammalian target of rapamycin complex 1 (mTORC1), and subsequent increase in protein synthesis. Here, we show that extracellular signal-regulated kinases (ERK1/2) respond to insulin stimulation and integrate insulin signaling to phosphorylate and thus inactivate GSK3ß, resulting in increased protein synthesis that is independent of Akt/mTORC1 activity. Inhibition of ERK1/2 in Tsc2 -/- cells-a model of TS-rescues GSK3ß activity and protein synthesis levels, thus highlighting ERK1/2 as a potential therapeutic target for the treatment of TS.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Modelos Biológicos , Biosíntesis de Proteínas , Esclerosis Tuberosa/enzimología , Esclerosis Tuberosa/patología , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Insulina/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
16.
Nat Commun ; 8: 14338, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165011

RESUMEN

Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Trehalosa/farmacología , Animales , Astrocitos , Autofagia/fisiología , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Fibroblastos , Técnicas de Silenciamiento del Gen , Células HeLa , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , Chaperonas Moleculares/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas , Fármacos Neuroprotectores/uso terapéutico , Fosforilación , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Trehalosa/uso terapéutico
18.
Free Radic Biol Med ; 98: 103-112, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27184957

RESUMEN

Autophagy is a cellular degradative pathway that involves the delivery of cytoplasmic components, including proteins and organelles, to the lysosome for degradation. Autophagy is implicated in the maintenance of skeletal muscle; increased autophagy leads to muscle atrophy while decreased autophagy leads to degeneration and weakness. A growing body of work suggests that reactive oxygen species (ROS) are important cellular signal transducers controlling autophagy. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria are major sources of ROS generation in skeletal muscle that are likely regulating autophagy through different signaling cascades based on localization of the ROS signals. This review aims to provide insight into the redox control of autophagy in skeletal muscle. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for skeletal muscle diseases.


Asunto(s)
Autofagia , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Glucólisis , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Transducción de Señal
19.
Sci Rep ; 6: 22866, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26960433

RESUMEN

Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson's disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 µM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 µM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Complejos Multiproteicos/metabolismo , NADPH Oxidasas/metabolismo , Enfermedad de Parkinson/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Autofagia , Línea Celular Tumoral , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , NADPH Oxidasa 2 , Estrés Oxidativo , Enfermedad de Parkinson/patología , Rotenona/farmacología
20.
Free Radic Biol Med ; 85: 197-206, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25975981

RESUMEN

Mammalian glutaredoxin 3 (Grx3) has been shown to be critical in maintaining redox homeostasis and regulating cell survival pathways in cancer cells. However, the regulation of Grx3 is not fully understood. In the present study, we investigate the subcellular localization of Grx3 under normal growth and oxidative stress conditions. Both fluorescence imaging of Grx3-RFP fusion and Western blot analysis of cellular fractionation indicate that Grx3 is predominantly localized in the cytoplasm under normal growth conditions, whereas under oxidizing conditions, Grx3 is translocated into and accumulated in the nucleus. Grx3 nuclear accumulation was reversible in a redox-dependent fashion. Further analysis indicates that neither the N-terminal Trx-like domain nor the two catalytic cysteine residues in the active CGFS motif of Grx3 are involved in its nuclear translocation. Decreased levels of Grx3 render cells susceptible to cellular oxidative stress, whereas overexpression of nuclear-targeted Grx3 is sufficient to suppress cells' sensitivity to oxidant treatments and reduce reactive oxygen species production. These findings provide novel insights into the regulation of Grx3, which is crucial for cell survival against environmental insults.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Estrés Oxidativo , Línea Celular Tumoral , Humanos , Especies Reactivas de Oxígeno/metabolismo , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA