Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Am Chem Soc ; 145(16): 8757-8763, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37042822

RESUMEN

Graphene nanoribbon heterostructures and heterojunctions have attracted interest as next-generation molecular diodes with atomic precision. Their mass production via solution methods and prototypical device integration remains to be explored. Here, the bottom-up solution synthesis and characterization of liquid-phase-processable graphene nanoribbon heterostructures (GNRHs) are demonstrated. Joint photoresponsivity measurements and simulations provide evidence of the structurally defined heterostructure motif acting as a type-I heterojunction. Real-time, time-dependent density functional tight-binding simulations further reveal that the photocurrent polarity can be tuned at different excitation wavelengths. Our results introduce liquid-phase-processable, self-assembled heterojunctions for the development of nanoscale diode circuitry and adaptive hardware.

2.
Nano Lett ; 22(3): 911-917, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35040646

RESUMEN

Complex van der Waals heterostructures from layered molecular stacks are promising optoelectronic materials offering the means to efficient, modular charge separation and collection layers. The effect of stacking in the electrodynamics of such hybrid organic-inorganic two-dimensional materials remains largely unexplored, whereby molecular scale engineering could lead to advanced optical phenomena. For instance, tunable Fano engineering could make possible on-demand transparent conducting layers or photoactive elements, and passive cooling. We employ an adapted Gersten-Nitzan model and real time time-dependent density functional tight-binding to study the optoelectronics of self-assembled monolayers on graphene nanoribbons. We find Fano resonances that cause electromagnetic induced opacity and transparency and reveal an additional incoherent process leading to interlayer exciton formation with a characteristic charge transfer rate. These results showcase hybrid van der Waals heterostructures as paradigmatic 2D optoelectronic stacks, featuring tunable Fano optics and unconventional charge transfer channels.

3.
Angew Chem Int Ed Engl ; 62(35): e202305737, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37335764

RESUMEN

The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π-π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.

4.
J Am Chem Soc ; 142(7): 3384-3391, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32070107

RESUMEN

Vibrational excitations provoked by coupling effects during charge transport through single molecules are intrinsic energy dissipation phenomena, in close analogy to electron-phonon coupling in solids. One fundamental challenge in molecular electronics is the quantitative determination of charge-vibrational (electron-phonon) coupling for single-molecule junctions. The ability to record electron-phonon coupling phenomena at the single-molecule level is a key prerequisite to fully rationalize and optimize charge-transport efficiencies for specific molecular configurations and currents. Here we exemplarily determine the pertaining coupling characteristics for a current-carrying chemically well-defined molecule by synchronous vibrational and current-voltage spectroscopy. These metal-molecule-metal junction insights are complemented by time-resolved infrared spectroscopy to assess the intramolecular vibrational relaxation dynamics. By measuring and analyzing the steady-state vibrational distribution during transient charge transport in a bis-phenylethynyl-anthracene derivative using anti-Stokes Raman scattering, we find ∼0.5 vibrational excitations per elementary charge passing through the metal-molecule-metal junction, by means of a rate model ansatz and quantum-chemical calculations.

5.
Angew Chem Int Ed Engl ; 58(33): 11285-11290, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31120567

RESUMEN

Reaction pathways involving quantum tunneling of protons are fundamental to chemistry and biology. They are responsible for essential aspects of interstellar synthesis, the degradation and isomerization of compounds, enzymatic activity, and protein dynamics. On-surface conditions have been demonstrated to open alternative routes for organic synthesis, often with intricate transformations not accessible in solution. Here, we investigate a hydroalkoxylation reaction of a molecular species adsorbed on a Ag(111) surface by scanning tunneling microscopy complemented by X-ray electron spectroscopy and density functional theory. The closure of the furan ring proceeds at low temperature (down to 150 K) and without detectable side reactions. We unravel a proton-tunneling-mediated pathway theoretically and confirm experimentally its dominant contribution through the kinetic isotope effect with the deuterated derivative.

6.
J Am Chem Soc ; 140(14): 4835-4840, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29565575

RESUMEN

Precisely controlling well-defined, stable single-molecule junctions represents a pillar of single-molecule electronics. Early attempts to establish computing with molecular switching arrays were partly challenged by limitations in the direct chemical characterization of metal-molecule-metal junctions. While cryogenic scanning probe studies have advanced the mechanistic understanding of current- and voltage-induced conformational switching, metal-molecule-metal conformations are still largely inferred from indirect evidence. Hence, the development of robust, chemically sensitive techniques is instrumental for advancement in the field. Here we probe the conformation of a two-state molecular switch with vibrational spectroscopy, while simultaneously operating it by means of the applied voltage. Our study emphasizes measurements of single-molecule Raman spectra in a room-temperature stable single-molecule switch presenting a signal modulation of nearly 2 orders of magnitude.

7.
J Am Chem Soc ; 140(25): 7803-7809, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29779378

RESUMEN

Among organic electronic materials, graphene nanoribbons (GNRs) offer extraordinary versatility as next-generation semiconducting materials for nanoelectronics and optoelectronics due to their tunable properties, including charge-carrier mobility, optical absorption, and electronic bandgap, which are uniquely defined by their chemical structures. Although planar GNRs have been predominantly considered until now, nonplanarity can be an additional parameter to modulate their properties without changing the aromatic core. Herein, we report theoretical and experimental studies on two GNR structures with "cove"-type edges, having an identical aromatic core but with alkyl side chains at different peripheral positions. The theoretical results indicate that installment of alkyl chains at the innermost positions of the "cove"-type edges can "bend" the peripheral rings of the GNR through steric repulsion between aromatic protons and the introduced alkyl chains. This structural distortion is theoretically predicted to reduce the bandgap by up to 0.27 eV, which is corroborated by experimental comparison of thus synthesized planar and nonplanar GNRs through UV-vis-near-infrared absorption and photoluminescence excitation spectroscopy. Our results extend the possibility of engineering GNR properties, adding subtle structural distortion as a distinct and potentially highly versatile parameter.

8.
Angew Chem Int Ed Engl ; 56(27): 7797-7802, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28481441

RESUMEN

The aggregation of (pro)chiral/achiral molecules into crystalline structures at interfaces forms conglomerates, racemates, and solid solutions, comparable to known bulk phases. Scanning tunneling microscopy and Monte Carlo simulations were employed to uncover a distinct racemic phase, expressing 1D disordered chiral sorting through random tiling in surface-confined supramolecularly assembled achiral 4,4''-diethynyl-1,1':4',1''-terphenyl molecules. The configurational entropy of the 1D disordered racemic tiling phase was verified by analytical modeling, and found to lie between that of a perfectly ordered 2D racemate and a racemic solid solution.

9.
J Am Chem Soc ; 138(47): 15488-15496, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27933922

RESUMEN

Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different spectroscopic and microscopic characterizations. Facile, large-area transfer of GNRs onto insulating substrates and subsequent device fabrication demonstrate their promising potential as semiconducting materials, exhibiting high current on/off ratios up to 6000 in field-effect transistor devices. This value is 3 orders of magnitude higher than values reported so far for other thin-film transistors of structurally defined GNRs. Notably, on-surface mass spectrometry analyses of polymer precursors provide unprecedented evidence for the chemical structures of the resulting GNRs, especially the heteroatom doping and heterojunctions. These results pave the way toward the scalable and controllable growth of GNRs for future applications.

10.
Nano Lett ; 15(4): 2242-8, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25756645

RESUMEN

Intramolecular current-induced vibronic excitations are reported in highly ordered monolayers of quaterphenylene dicarbonitriles at an electronically patterned boron nitride on copper platform (BN/Cu(111)). A first level of spatially modulated conductance at the nanometer-scale is induced by the substrate. Moreover, a second level of conductance variations at the molecular level is found. Low temperature scanning tunneling microscopy studies in conjunction with molecular dynamics calculations reveal collective amplification of the molecule's interphenylene torsion angles in the monolayer. Librational modes influencing these torsion angles are identified as initial excitations during vibronic conductance. Density functional theory is used to map phenylene breathing modes and other vibrational excitations that are suggested to be at the origin of the submolecular features during vibronic conductance.

11.
Nano Lett ; 14(8): 4461-8, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25078022

RESUMEN

Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.


Asunto(s)
Simulación de Dinámica Molecular , Nanoporos/ultraestructura , Rotación
12.
Nano Lett ; 14(8): 4486-92, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25115337

RESUMEN

Molecular self-assembly is a versatile nanofabrication technique with atomic precision en route to molecule-based electronic components and devices. Here, we demonstrate a three-dimensional, bicomponent supramolecular network architecture on an all-carbon sp(2)-sp(3) transparent platform. The substrate consists of hydrogenated diamond decorated with a monolayer graphene sheet. The pertaining bilayer assembly of a melamine-naphthalenetetracarboxylic diimide supramolecular network exhibiting a nanoporous honeycomb structure is explored via scanning tunneling microscopy initially at the solution-highly oriented pyrolytic graphite interface. On both graphene-terminated copper and an atomically flat graphene/diamond hybrid substrate, an assembly protocol is demonstrated yielding similar supramolecular networks with long-range order. Our results suggest that hybrid platforms, (supramolecular) chemistry and thermodynamic growth protocols can be merged for in situ molecular device fabrication.


Asunto(s)
Grafito/química , Imidas/química , Membranas Artificiales , Nanoporos , Naftalenos/química , Triazinas/química
13.
Nano Lett ; 14(12): 6823-7, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25414977

RESUMEN

The perfect transmission of charge carriers through potential barriers in graphene (Klein tunneling) is a direct consequence of the Dirac equation that governs the low-energy carrier dynamics. As a result, localized states do not exist in unpatterned graphene, but quasibound states can occur for potentials with closed integrable dynamics. Here, we report the observation of resonance states in photoswitchable self-assembled molecular(SAM)-graphene hybrid. Conductive AFM measurements performed at room temperature reveal strong current resonances, the strength of which can be reversibly gated on- and off- by optically switching the molecular conformation of the mSAM. Comparisons of the voltage separation between current resonances (∼ 70-120 mV) with solutions of the Dirac equation indicate that the radius of the gating potential is ∼ 7 ± 2 nm with a strength ≥ 0.5 eV. Our results and methods might provide a route toward optically programmable carrier dynamics and transport in graphene nanomaterials.

14.
J Am Chem Soc ; 136(12): 4651-8, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24524804

RESUMEN

On-surface chemistry for atomically precise sp(2) macromolecules requires top-down lithographic methods on insulating surfaces in order to pattern the long-range complex architectures needed by the semiconductor industry. Here, we fabricate sp(2)-carbon nanometer-thin films on insulators and under ultrahigh vacuum (UHV) conditions from photocoupled brominated precursors. We reveal that covalent coupling is initiated by C-Br bond cleavage through photon energies exceeding 4.4 eV, as monitored by laser desorption ionization (LDI) mass spectrometry (MS) and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) gives insight into the mechanisms of C-Br scission and C-C coupling processes. Further, unreacted material can be sublimed and the coupled sp(2)-carbon precursors can be graphitized by e-beam treatment at 500 °C, demonstrating promising applications in photolithography of graphene nanoarchitectures. Our results present UV-induced reactions on insulators for the formation of all sp(2)-carbon architectures, thereby converging top-down lithography and bottom-up on-surface chemistry into technology.

15.
Chem Soc Rev ; 41(10): 3713-30, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22430648

RESUMEN

Self-assembly is one of the most important concepts of the 21st century. Strikingly, despite the rational design of molecules for biological and pharmaceutical applications is rather well established, only few are the attempts to formally refine predictions of self-assembly in material science. In the present tutorial review, we encompass some of the most significant efforts towards the systematic study of (thermodynamically stable) self-assembly. We discuss experimental and computer-simulated self-assembly events in hard-matter, soft-matter and higher symmetry architectures under the common framework of partition functions. In this framework, we endeavor to correlate state-of-the-art chemical design, programming and/or engineering of reversible (thermal and chemical equilibrium) self-assembly with knowledge of the underlying partition function landscape in a step towards quantitative predictions and ab initio molecular design.

16.
ACS Nano ; 17(19): 18832-18842, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37729013

RESUMEN

The fabrication of atomically precise nanographanes is a largely unexplored frontier in carbon-sp3 nanomaterials, enabling potential applications in phononics, photonics and electronics. One strategy is the hydrogenation of prototypical nanographene monolayers and multilayers under vacuum conditions. Here, we study the interaction of atomic hydrogen, generated by a hydrogen source and hydrogen plasma, with hexa-peri-hexabenzocoronene on gold using integrated time-of-flight mass spectrometry, scanning tunneling microscopy and Raman spectroscopy. Density functional tight-binding molecular dynamics is employed to rationalize the conversion to sp3 carbon atoms. The resulting hydrogenation of hexa-peri-hexabenzocoronene molecules is demonstrated computationally and experimentally, and the potential for atomically precise hexa-peri-hexabenzocoronene-derived nanodiamond fabrication is proposed.

17.
Nat Commun ; 13(1): 442, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064113

RESUMEN

Manufacturing molecule-based functional elements directly at device interfaces is a frontier in bottom-up materials engineering. A longstanding challenge in the field is the covalent stabilization of pre-assembled molecular architectures to afford nanodevice components. Here, we employ the controlled supramolecular self-assembly of anthracene derivatives on a hexagonal boron nitride sheet, to generate nanographene wires through photo-crosslinking and thermal annealing. Specifically, we demonstrate µm-long nanowires with an average width of 200 nm, electrical conductivities of 106 S m-1 and breakdown current densities of 1011 A m-2. Joint experiments and simulations reveal that hierarchical self-assembly promotes their formation and functional properties. Our approach demonstrates the feasibility of combined bottom-up supramolecular templating and top-down manufacturing protocols for graphene nanomaterials and interconnects, towards integrated carbon nanodevices.

18.
Nat Commun ; 13(1): 6146, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253383

RESUMEN

Selective C-H bond activation is one of the most challenging topics for organic reactions. The difficulties arise not only from the high C-H bond dissociation enthalpies but also the existence of multiple equivalent/quasi-equivalent reaction sites in organic molecules. Here, we successfully achieve the selective activation of four quasi-equivalent C-H bonds in a specially designed nitrogen-containing polycyclic hydrocarbon (N-PH). Density functional theory calculations reveal that the adsorption of N-PH on Ag(100) differentiates the activity of the four ortho C(sp3) atoms in the N-heterocycles into two groups, suggesting a selective dehydrogenation, which is demonstrated by sequential-annealing experiments of N-PH/Ag(100). Further annealing leads to the formation of N-doped graphene nanoribbons with partial corannulene motifs, realized by the C-H bond activation process. Our work provides a route of designing precursor molecules with ortho C(sp3) atom in an N-heterocycle to realize surface-induced selective dehydrogenation in quasi-equivalent sites.

19.
J Phys Chem Lett ; 12(1): 454-462, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33369418

RESUMEN

The principles of topology in condensed matter physics have expanded to areas such as photonics, acoustics, electronics, and mechanics. Their extension to dynamic (soft) matter could enable the control and design of topological thermodynamic (micro)states and nonreciprocal dynamics, potentially leading to paradigmatic applications in molecular and thermal waveguiding, logics, and energy management. This Perspective explores distinct topological concepts for dynamic matter and prospective function. Topological tools are exemplified and discussed for the study of nonlocal order parameters or invariants in dynamic molecular matter, toward the engineering of assemblies, reactions, and system chemistry with unconventional global properties-a scope which has the potential to push the frontiers of physical chemistry and transform chemical topology from form to function.

20.
J Am Chem Soc ; 132(50): 17880-5, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21114285

RESUMEN

Supramolecular two-dimensional engineering epitomizes the design of complex molecular architectures through recognition events in multicomponent self-assembly. Despite being the subject of in-depth experimental studies, such articulated phenomena have not been yet elucidated in time and space with atomic precision. Here we use atomistic molecular dynamics to simulate the recognition of complementary hydrogen-bonding modules forming 2D porous networks on graphite. We describe the transition path from the melt to the crystalline hexagonal phase and show that self-assembly proceeds through a series of intermediate states featuring a plethora of polygonal types. Finally, we design a novel bicomponent system possessing kinetically improved self-healing ability in silico, thus demonstrating that a priori engineering of 2D self-assembly is possible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA