Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Gastroenterology ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004156

RESUMEN

BACKGROUND AND AIMS: The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and includes epithelial barrier dysfunction, a key element at the interface between the gut lumen and the deeper intestinal layers. Beneath the epithelial barrier there is the vascular one representing the last barrier to avoid luminal antigen dissemination The aims of this study were to correlate morpho-functional aspects of epithelial and vascular barriers with symptom perception in IBS. METHODS: Seventy-eight healthy subjects (controls) and 223 patients with IBS were enrolled in the study and phenotyped according to validated questionnaires. Sugar test was used to evaluate in vivo permeability. Immunohistochemistry, western blot, and electron microscopy were used to characterize the vascular barrier. Vascular permeability was evaluated by assessing the mucosal expression of plasmalemma vesicle-associated protein-1 and vascular endothelial cadherin. Caco-2 or human umbilical vein endothelial cell monolayers were incubated with soluble mediators released by mucosal biopsies to highlight the mechanisms involved in permeability alteration. Correlation analyses have been performed among experimental and clinical data. RESULTS: The intestinal epithelial barrier was compromised in patients with IBS throughout the gastrointestinal tract. IBS-soluble mediators increased Caco-2 permeability via a downregulation of tight junction gene expression. Blood vessel density and vascular permeability were increased in the IBS colonic mucosa. IBS mucosal mediators increased permeability in human umbilical vein endothelial cell monolayers through the activation of protease-activated receptor-2 and histone deacetylase 11, resulting in vascular endothelial cadherin downregulation. Permeability changes correlated with intestinal and behavioral symptoms and health-related quality of life of patients with IBS. CONCLUSIONS: Epithelial and vascular barriers are compromised in patients with IBS and contribute to clinical manifestations.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39017998

RESUMEN

We evaluated the activity of piperacillin in relation to INCREASING TAZOBACTAM CONCENTRATION against ESBL-producing Enterobacterales collected from patients with bacteraemia. Increasing tazobactam concentration (4, 12 or 24 mg/L) exerted a reduction of piperacillin MICs under the clinical breakpoint in a concentration-dependent manner (0%, 60% and 90% of clinical isolates). Also, activity of piperacillin/tazobactam based at higher achievable serum concentrations (123/14 mg/L) is needed to reduce the bacterial growth in 92% of ESBL-producers. CHANGES IN THE PIPERACILLIN MIC IN RELATION TO INCREASING TAZOBACTAM SUGGEST THAT REALTIME TDM COULD BE USED FOR DRIVEN ANTIMICROBIAL THERAPY WITH PIPERACILLIN/TAZOBACTAM IN BSI DUE TO ESBL STRAINS.

3.
Diagn Microbiol Infect Dis ; 110(1): 116372, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38875893
4.
Antibiotics (Basel) ; 12(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38136741

RESUMEN

The novel ß-lactam/ß-lactamase inhibitor combinations (ßL-ßLICs) are one of the last-line resources available against multidrug-resistant (MDR) Gram-negative bacteria. Among ßL-ßLICs, ceftazidime/avibactam (CAZ-AVI) demonstrated strong activity against carbapenem-resistant Enterobacterales (CRE). Avibactam was proven to restore bactericidal activity of ceftazidime, inhibiting both KPC and OXA-48-like ß-lactamases. Despite this, emergence of CAZ-AVI-resistant strains in Enterobacterales has been reported. Herein, we evaluated the in vitro ceftazidime activity in the presence of increasing concentrations of avibactam by the broth microdilution method against CAZ-AVI-susceptible and resistant genome-characterized KPC-producing K. pneumoniae (KPC-Kp) clinical isolates. Strains expressing KPC and co-expressing KPC/OXA-181 carbapenemase were selected on the basis of the different phenotypic traits for novel ßL-ßLICs and cefiderocol. Notably, avibactam at 8 mg/L maintained the MIC of ceftazidime above the clinical breakpoint in 14 out of 15 (93%) KPC-Kp resistant to CAZ-AVI. A high concentration of avibactam (i.e., 64 mg/L) is required to observe a bactericidal activity of ceftazidime against 9 out of 15 (60%) CAZ-AVI-resistant isolates. In vitro evaluation showed that with the increase in the concentration of avibactam, ceftazidime showed high activity against CAZ-AVI-susceptible strains. High concentrations of avibactam in vivo are required for ceftazidime to be active against CAZ-AVI-resistant KPC-Kp.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA