Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Physiol Plant ; 153(1): 149-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24835442

RESUMEN

Increased air pollution in a number of developing African countries, together with the reports of vegetation damage typically associated with acid precipitation in commercial forests in South Africa, has raised concerns over the potential impacts of acid rain on natural vegetation in these countries. Recalcitrant (i.e. desiccation sensitive) seeds of many indigenous African species, e.g. must germinate shortly after shedding and hence, may not be able to avoid exposure to acid rain in polluted areas. This study investigated the effects of simulated acid rain (rainwater with pH adjusted to pH 3.0 and 4.5 with 70:30, H2 SO4 :HNO3 ) on germination, seedling growth and oxidative metabolism in a recalcitrant-seeded African tree species Trichilia dregeana Sond., growing in its natural seed bank. The results suggest that acid rain did not compromise T. dregeana seed germination and seedling establishment significantly, relative to the control (non-acidified rainwater). However, pH 3.0 treated seedlings exhibited signs of stress typically associated with acid rain: leaf tip necrosis, abnormal bilobed leaf tips, leaf necrotic spots and chlorosis, reduced leaf chlorophyll concentration, increased stomatal density and indications of oxidative stress. This may explain why total and root biomass of pH 3.0 treated seedlings were significantly lower than the control. Acid rain also induced changes in the species composition and relative abundance of the different life forms emerging from T. dregeana's natural seed bank and in this way could indirectly impact on T. dregeana seedling establishment success.


Asunto(s)
Meliaceae/fisiología , Estrés Fisiológico , Lluvia Ácida/efectos adversos , Antioxidantes/metabolismo , Biomasa , Clorofila/metabolismo , Germinación/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Meliaceae/efectos de los fármacos , Meliaceae/crecimiento & desarrollo , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/fisiología , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología
2.
Cryobiology ; 69(1): 100-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24909952

RESUMEN

Cryopreservation is the most promising option for the long-term germplasm conservation of recalcitrant-seeded species. However, the variable post-cryo success achieved with the excised zygotic explants traditionally used for cryopreservation has been a concern for some time. Differential drying rates amongst explants of different species, uneven drying amongst explants within a batch of seeds and uneven drying across tissues within individual embryos could be contributory factors to this variable success and these phenomena form the foci of the present study. Using zygotic explants from a range of recalcitrant-seeded species, which included sub-tropical dicotyledonous trees and sub-tropical monocotyledonous geophytes, the study showed that embryo morphology and anatomy are critical determinants of the drying characteristics of the different tissues composing the explant and hence, post-cryo survival. The results suggest that the rates of drying of explants to water contents (WCs) in the theoretically optimal range for successful cryopreservation are species-specific, and that more rapid drying rates may promote post-cryo survival. However, the large variation in WC amongst individual explants in bulk samples challenges the selection of the theoretically optimum WC for cryopreservation. As a consequence of differential drying rates across the different tissues composing explants, either lethal ice crystal damage or desiccation damage may sometimes be likely in tissues responsible for the onwards development of the embryo. Drying times for cryopreservation of such explants should, therefore, be selected on the basis of WC of segments containing root or shoot meristem, rather than embryo bulk WC. Drying intensity and duration also interact with explant morphology and embryo/axis size and anatomy to bring about - or preclude - post-cryo survival.


Asunto(s)
Criopreservación/métodos , Desecación , Semillas/citología , Calorimetría , Castanospermum/embriología , Conservación de los Recursos Naturales/métodos , Crioprotectores , Liliaceae/embriología , Meliaceae/embriología , Strychnos/embriología , Agua
3.
Biol Res ; 46(2): 121-30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23959009

RESUMEN

Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues.


Asunto(s)
Desecación/métodos , Peroxidación de Lípido/fisiología , Pisum sativum/fisiología , Raíces de Plantas/metabolismo , Semillas/fisiología , Agua/metabolismo , Antioxidantes/metabolismo , Germinación/fisiología , NAD/análisis , Estrés Oxidativo , Oxidorreductasas/metabolismo , Pisum sativum/metabolismo , Fosfofructoquinasas/metabolismo , Supervivencia Tisular/fisiología
4.
Physiol Plant ; 142(4): 326-38, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21401616

RESUMEN

Studies to elucidate the biochemical basis of survival of excised embryonic axes (EAs) of recalcitrant seeds of Trichilia dregeana at different drying rates revealed significant differences between slow and rapid drying. Rapid drying allowed these EAs to survive dehydration to much lower water contents (WCs; ca. 0.31 g g⁻¹ dry mass basis with 73% germination) compared with slow drying, where 90% of the EAs lost viability at a WC of ca. 0.79 g g⁻¹. In EAs slowly dried within seeds, the levels of hydroxyl radical (three- to fivefold at WCs > 0.5 g g⁻¹) and lipid peroxidation (50% at similar WC) were significantly higher compared with those dried rapidly to comparable WCs. When EAs were dried slowly, enzymic antioxidant levels were not sustained and declined significantly with prolonged storage. In contrast, sustained activity of enzymic antioxidants was detected in rapidly dried EAs even at relatively low WCs. Furthermore, the greater decline in glutathione (GSH)/GSH disulphide ratio in EAs slowly dried within seeds compared with rapidly dried EAs and a shift in GSH redox potential to relatively more positive values in the EAs slowly dried within seeds was correlated with considerable viability loss. It is apparent from this study that greater retention of viability to lower WCs in rapidly dried EAs from recalcitrant seeds may at least be partly explained by the retention of functional antioxidant status. It is also suggested that the reduction of viability in rapidly dried EAs at very low WCs appears to be a non-oxidative process.


Asunto(s)
Desecación , Meliaceae/metabolismo , Estrés Oxidativo , Semillas/embriología , Catalasa/metabolismo , Germinación , Glutatión/análisis , Glutatión Reductasa/metabolismo , Radical Hidroxilo/análisis , Peroxidación de Lípido , Meliaceae/embriología , Meliaceae/enzimología , Semillas/metabolismo , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
5.
J Integr Plant Biol ; 53(4): 270-80, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21205182

RESUMEN

The potential to cryopreserve embryonic axes of desiccation-sensitive (recalcitrant) seeds is limited by damage during the desiccation necessary for low temperature survival, but the basis of this injury and how to reduce it is not well understood. The effects of drying rate on the viability, respiratory metabolism and free radical-mediated processes were therefore investigated during dehydration of Quercus robur L. embryonic axes. Viability, assessed by evidence of germination and tetrazolium staining, showed a sharp decline at 0.27 and 0.8 g/g during rapid (<12 h) or slow (3 d) dehydration, respectively. Rapid dehydration therefore lowered the critical water content for survival. At any given water content rapid dehydration was associated with higher activities of the free radical processing enzymes, superoxide dismutase, catalase and glutathione reductase and lower levels of hydroperoxide and membrane damage. Rapid dehydration was also associated with lower malate dehydrogenase activity, and a reduced decline in phosphofructokinase activity and in levels of the oxidized form of nicotinamide dinucleotide. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in hydrated storage after 3 d. The results presented are consistent with rapid dehydration reducing the accumulation of damage resulting from desiccation induced aqueous-based deleterious reactions.


Asunto(s)
Desecación , Quercus/embriología , Quercus/metabolismo , Semillas/embriología , Semillas/metabolismo , Agua/análisis , Antioxidantes/metabolismo , Respiración de la Célula , Electrólitos/metabolismo , Germinación , Peróxido de Hidrógeno/metabolismo , Cinética , NAD/metabolismo , Quercus/enzimología , Semillas/enzimología , Coloración y Etiquetado , Sales de Tetrazolio/metabolismo
6.
Plants (Basel) ; 10(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207499

RESUMEN

All orthodox seeds eventually deteriorate during storage, a well-known problem in seed banking. Here we used a greenhouse study to test if priming deteriorated seeds with cathodic water can improve the emergence and subsequent seedling growth of three South African tree species, Bolusanthus speciosus, Combretum erythrophyllum and Erythrina caffra. Other priming solutions investigated were calcium magnesium (CaMg) solution and deionized water. In the present study, seeds were subjected to an artificial deterioration by increasing their water content to 14% and keeping them at 40 °C and 100% RH until they had lost 50% of their germination under laboratory conditions. Fresh and deteriorated seeds were primed with cathodic water, CaMg solution and deionized water, with non-primed fresh and deteriorated seeds as controls. Controlled deterioration significantly reduced total emergence and the biomass and photosynthetic parameters of the resulting seedlings. In one species (Bolusanthus speciosus), priming the deteriorated seeds with cathodic water significantly improved emergence parameters. However, in all species cathodic water significantly improved the total biomasses and other growth parameters of the seedlings derived from deteriorated seeds. Priming with CaMg solution and deionized water had little effect on emergence and while improving the growth of seedlings derived from deteriorated seeds, they were less effective than cathodic water. In fresh seeds, priming with all solutions resulted in small improvements in some parameters. Controlled deterioration of fresh seeds reduced the membrane stability index (MSI) in two of the three species and in all species increased the levels of the lipid oxidation products MDA and 4-HNE. Priming deteriorated seeds with cathodic water increased the MSI and reduced the MDA contents in all species and the 4-HNE content in one species. Other priming solutions were generally less effective in ameliorating oxidative stress. Results suggest that the strong antioxidative properties of cathodic water can explain its ability to ameliorate deterioration. In conclusion, the present study shows that priming with cathodic water is an effective way of invigorating deteriorated orthodox seeds and that it may have considerable potential in orthodox seed conservation.

7.
Physiol Plant ; 139(2): 205-19, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20113434

RESUMEN

Cryopreservation is the most promising long-term storage option for recalcitrant (i.e. desiccation-sensitive) seed germplasm; however, its effects on the vigor of recovered seedlings are unclear. This study looked at the vigor of seedlings recovered from partially dried (D) and cryopreserved (C) recalcitrant zygotic embryos (ZEs) of Amaryllis belladonna. Seedlings recovered from fresh (F), D- and C-embryos were regenerated in vitro, hardened-off ex vitro and then exposed to 12 days of watering (W) or 8 days of water deficit (S), followed by 3 days of re-watering. Seedling vigor was assessed in terms of physiological and growth responses to the imposed water stress. Compared with F-embryos, partial dehydration and cryopreservation reduced the number of embryos that produced seedlings, as well as the subsequent in vitro biomass of these seedlings. DW- and CW-seedlings (i.e. seedlings recovered from dried and cryopreserved ZEs that were watered for 12 days) exhibited lower CO(2)-assimilation rates and abnormal root growth. Stomatal density was also lower in C-seedlings. DS- and CS-seedlings were exposed to persistent low leaf water and pressure potentials and unlike FS-seedlings, displayed signs of having incurred damage to their photosynthetic machinery. CS-seedlings were less efficient at adjusting leaf water potential to meet transpirational demands and more susceptible to persistent turgor loss than DS- and FS-seedlings. DS-seedlings performed slightly better than CS-seedlings but drought-induced seedling mortality in both these treatments was higher than FS-seedlings. These results suggest that seedlings recovered from partially dried and cryopreserved embryos were less vigorous and more susceptible to hydraulic failure than those from fresh ZEs.


Asunto(s)
Criopreservación , Liliaceae/embriología , Plantones/crecimiento & desarrollo , Semillas/embriología , Deshidratación , Fotosíntesis , Hojas de la Planta/fisiología , Plantones/fisiología , Estrés Fisiológico , Agua/fisiología
8.
Plants (Basel) ; 9(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916793

RESUMEN

This study assessed the potential of pre-hydration treatment with aqueous solutions (electrolysed [cathodic water; CW] and non-electrolysed) prepared from four different inorganic ion combinations: 1 mM CaCl2, 1 µm CaCl2 and 1 mM MgCl2 (CaMg, hereafter), 1 mM MgCl2 and 1 mM NaCl to invigorate controlled deteriorated (CDd) Brassicaoleracea (cabbage) and Lactucasativa (lettuce) seeds by assessing germination, vigour and biochemical markers (electrolyte leakage, lipid peroxidation products, protein carbonylation, and defence and germination associated enzymes) of oxidative stress. Additionally, the possible effects of pH of electrolysed CaMg and NaCl solutions were assessed. The inorganic salt solutions were applied to fresh seeds and seeds deteriorated to 75% viability (P75), 50% viability (P50) and 25% viability (P25); deionised water served as control. The pre-hydration treatment did not enhance normal seedling production in cabbage. However, Ca-containing and CW hydration treatments (CaCl2 CW, CaMg and CaMg CW [6.5], MgCl2 CW, NaCl CW and NaCl CW [6.5]) promoted normal seedling production of CDd lettuce seeds, while seedling vigour was enhanced by CaMg, CaMg CW (6.5), NaCl CW and NaCl CW (6.5) in CDd cabbage seeds, and CaCl2, CaCl2 CW, CaMg, CaMg CW (6.5), MgCl2 CW, NaCl CW and NaCl CW (6.5) in CDd lettuce seeds. The supplementation of Ca, a component of the ionised solutes, and/or the reducing potential of CW contributed to increased normal seedling production in lettuce seeds irrespective of the pH of treatment solutions or degree of deterioration. Overall, the pre-hydration treatments enhanced endogenous antioxidants leading to reduced levels of electrolyte leakage, lipid peroxidation, protein carbonylation, and enhanced germination enzyme activities in lettuce seeds. The study concluded that pre-hydration with selected inorganic salt solutions can invigorate debilitated lettuce seeds.

9.
Plants (Basel) ; 9(8)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751056

RESUMEN

The quality of seeds in gene banks gradually deteriorates during long-term storage, which is probably, at least in part, a result of the progressive development of oxidative stress. Here, we report a greenhouse study that was carried out to test whether a novel approach of seed invigoration using priming with cathodic water (cathodic portion of an electrolysed calcium magnesium solution) could improve seedling emergence and growth in two deteriorated crop seeds. Fresh seeds of Pisum sativum and Cucurbita pepo were subjected to controlled deterioration to 50% viability at 14% seed moisture content (fresh weight basis), 40 °C and 100% relative humidity. The deteriorated seeds were thereafter primed with cathodic water, calcium magnesium solution and deionized water. In addition, to study the mechanism of the impacts of invigoration, the effects of such priming on the lipid peroxidation products malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) and on the reactive oxygen species (ROS) scavenging enzymes superoxide dismutase and catalase were also determined in the fresh and deteriorated seeds. All priming treatments improved seed emergence parameters, subsequent seedling photosynthesis and growth relative to the unprimed seeds. In general, cathodic water was most effective at invigorating deteriorated seeds. Analysis of the lipid peroxidation products and antioxidant enzyme activities in invigorated seeds provided support for the hypothesis that the effectiveness of cathodic water in invigoration of debilitated orthodox seeds in general and of pea and pumpkin seeds in particular derive from its ability to act as an antioxidant.

10.
J Integr Plant Biol ; 51(11): 1002-7, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19903222

RESUMEN

The response of desiccation-sensitive plant tissues to dehydration is significantly affected by dehydration conditions, particularly the rate of drying. Consequently it is important to be able to quantify drying rate. The aim of the study was to assess two models that have been proposed to describe drying kinetics, and thus to provide a quantification of non-linear drying rates, of embryonic axes excised from recalcitrant seeds. These models are an exponential drying time course, and a modified inverse relationship, respectively. For the six species investigated here the inverse function was generally found to fit drying data better than the exponential function under both rapid and slow drying conditions, and so is recommended. The rate of drying, under the conditions used here, was determined by axis size and possibly the nature of the axis outer coverings, rather than the water activity difference between the tissue and surrounding air.


Asunto(s)
Desecación , Meliaceae/embriología , Meliaceae/fisiología , Modelos Biológicos , Semillas/embriología , Semillas/fisiología , Biomasa , Deshidratación , Cinética , Factores de Tiempo
11.
Tree Physiol ; 28(3): 417-24, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18171665

RESUMEN

We investigated differences in physiological and morphological traits between the tall and short forms of mopane (Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Léonard) trees growing near Maun, Botswana on a Kalahari sandveld overlying an impermeable calcrete duricrust. We sought to determine if differences between the two physiognomic types are attributable to the way they exploit available soil water. The tall form, which was located on deeper soil than the short form (5.5 versus 1.6 m), had a lower leaf:fine root biomass ratio (1:20 versus 1:6), but a similar leaf area index (0.9-1.0). Leaf nitrogen concentrations varied between 18 and 27 mg g(-1) and were about 20% higher in the tall form than in the short form. Maximum net assimilation rates (A sat) occurred during the rainy seasons (March-April 2000 and January-February 2001) and were similar in the tall and short forms (15-22 micromol m(-2) s(-1)) before declining to less than 10 micromol m(-2) s(-1) at the end of the rainy season in late April. As the dry season progressed, A sat, soil water content, predawn leaf water potential (Psi pd) and leaf nitrogen concentration declined rapidly. Before leaf abscission, Psi pd was more negative in the short form (-3.4 MPa) than in the tall form (-2.7 MPa) despite the greater availability of soil water beneath the short form trees. This difference appeared attributable to differences in root depth and density between the physiognomic types. Stomatal regulation of water use and carbon assimilation differed between years, with the tall form having a consistently more conservative water-use strategy as the dry season progressed than the short form.


Asunto(s)
Fabaceae/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Estaciones del Año , Agua/metabolismo , Botswana , Dióxido de Carbono/metabolismo , Ecosistema , Fabaceae/crecimiento & desarrollo , Nitrógeno/metabolismo , Suelo , Tiempo (Meteorología)
12.
J Plant Physiol ; 221: 119-131, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29275215

RESUMEN

Recalcitrant seeds, unlike orthodox types, are desiccation sensitive and hence, cannot be stored using conventional seed storage methods In this study, relative changes of protein expression in T. dregeana seeds during desiccation and hydrated storage (a short- to medium-term storage method) were analysed to understand the basis of their desiccation- and storage-induced viability loss. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) were used to compare (selected) protein expression levels across fresh, partially dehydrated and stored seeds. A total of 114 proteins were significantly differentially expressed in embryonic axes of fresh seeds and those seeds exposed to dehydration and hydrated storage (which exposed seeds to a mild dehydration stress). Proteins involved in protein synthesis were up-regulated in stored and dehydrated seeds, possibly in response to dehydration-induced repair processes and/or germinative development. A range of proteins related to antioxidant protection were variably up- and down-regulated in stored and dehydrated seeds, respectively. Additionally, a class I heat shock protein was down-regulated in dehydrated and stored seeds; no late embryogenesis abundant proteins were identified in both stored and dehydrated seeds; and storage and dehydration up-regulated proteins involved in the provision of energy for cell survival. The results suggest that dehydration- and storage-induced viability loss in recalcitrant seeds may be based on proteomic changes that lead to cellular redox imbalance and increased cell energy demands. This, together with the absence/down-regulation of proteins associated with desiccation tolerance in plant tissues may form part of the proteomic footprint for desiccation sensitivity in seeds.


Asunto(s)
Desecación , Meliaceae/fisiología , Proteínas de Plantas/genética , Semillas/fisiología , Transcriptoma , Perfilación de la Expresión Génica , Meliaceae/genética , Proteínas de Plantas/metabolismo , Semillas/genética
13.
Front Plant Sci ; 4: 478, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24319450

RESUMEN

A suite of interacting processes and mechanisms enables tolerance of desiccation and storage (conservation) of orthodox seeds in the dry state. While this is a long-term option under optimized conditions, dry orthodox seeds are not immortal, with life spans having been characterized as short, intermediate and long. Factors facilitating desiccation tolerance are metabolic "switch-off" and intracellular dedifferentiation. Recalcitrant seeds lack these mechanisms, contributing significantly to their desiccation sensitivity. Consequently, recalcitrant seeds, which are shed at high water contents, can be stored only in the short-term, under conditions not allowing dehydration. The periods of such hydrated storage are constrained by germination that occurs without the need for extraneous water, and the proliferation of seed-associated fungi. Cryopreservation is viewed as the only option for long-term conservation of the germplasm of recalcitrant-seeded species. This is not easily achieved, as each of the necessary procedures imposes oxidative damage. Intact recalcitrant seeds cannot be cryopreserved, the common practice being to use excised embryos or embryonic axes as explants. Dehydration is a necessary procedure prior to exposure to cryogenic temperatures, but this is associated with metabolism-linked injury mediated by uncontrolled reactive oxygen species generation and failing anti-oxidant systems. While the extent to which this occurs can be curtailed by maximizing drying rate (flash drying) it cannot be completely obviated. Explant cooling for, and rewarming after, cryostorage must necessarily be rapid, to avoid ice crystallization. The ramifications of desiccation sensitivity are discussed, as are problems involved in cryostorage, particularly those accompanying dehydration and damage consequent upon ice crystallization. While desiccation sensitivity is a "fact" of seed recalcitrance, resolutions of the difficulties involved germplasm conservation are possible as discussed.

14.
Biol. Res ; 46(2): 121-130, 2013. ilus
Artículo en Inglés | LILACS | ID: lil-683988

RESUMEN

Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues.


Asunto(s)
Desecación/métodos , Peroxidación de Lípido/fisiología , Pisum sativum/fisiología , Raíces de Plantas/metabolismo , Semillas/fisiología , Agua/metabolismo , Antioxidantes/metabolismo , Germinación/fisiología , NAD , Estrés Oxidativo , Oxidorreductasas/metabolismo , Pisum sativum/metabolismo , Fosfofructoquinasas/metabolismo , Supervivencia Tisular/fisiología
15.
Oecologia ; 139(4): 535-44, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15042456

RESUMEN

Water status in relation to standing biomass and leaf area indices (LAI) of the subtropical foredune species Arctotheca populifolia, Ipomoea pes-caprae and Scaevola plumieri were studied in the Eastern Cape, South Africa. The plants showed little evidence of water stress, never developing leaf water potentials more negative than -1.55 MPa, a value which is typical of mesophytes rather than xerophytes. The plants showed no seasonal changes in osmotic potential, an indication that they did not need to osmoregulate, nor were there significant alterations in tissue elasticity. Turgor potential for the most part remained positive throughout the day or recovered positive values at night, a condition suitable for the maintenance of growth that may be essential to cope with sand accretion. All three species show relatively high transpiration rates and only I. pes-caprae showed any evidence of strong limitations of transpiration rate through reductions in midday stomatal conductance. All three species had relatively high instantaneous water use efficiencies as a result of high assimilation rates rather than low transpiration rates. Simple water budgets, accounting for losses by transpiration and inputs from rainfall, suggest that the water stored in the dune sands is sufficient to meet the requirements of the plants, although water budgets calculated for I. pes-caprae suggest that this species may on occasion be water limited. The results suggest that it is the low biomass and LAI that lead to these favourable water relations.


Asunto(s)
Magnoliopsida/fisiología , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Agua/fisiología , Análisis de Varianza , Biomasa , Ritmo Circadiano/fisiología , Magnoliopsida/anatomía & histología , Lluvia , Estaciones del Año , Dióxido de Silicio , Sudáfrica , Equilibrio Hidroelectrolítico/fisiología
16.
Funct Plant Biol ; 30(3): 281-290, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32689010

RESUMEN

The ability of tissues to survive desiccation is common in seeds but rare in vegetative tissues. In this study the ultrastructure of hydrated and dehydrated tissues were examined at different stages of the life cycle of the resurrection grass, Eragrostis nindensis Ficalho & Hiern. Conventional fixation techniques are unsuitable for dry tissues as rehydration occurs during fixation in aqueous fixatives. Thus a cryofixation and freeze-substitution method was developed. As a result of the improved fixation methods, it was possible to identify the stage and nature of the damage in the desiccation-sensitive tissues. E. nindensis has desiccation-tolerant orthodox seeds, but the young seedlings are not tolerant to extreme water loss. However, like the seeds, most of the leaves of the adult plant are tolerant to desiccation (only the oldest outermost leaf on a tiller are not). Desiccation-induced damage in these outer leaves was observed in the later stage of dehydration, dominated by the appearance of abundant cell wall fractures (1 wall fracture per 50 µm2). Unlike the outer leaves, the leaves of seedlings appeared similar to those of the hydrated ones upon desiccation. Irreparable damage occurred on rehydration of these tissues possibly as a result of the absence of protection mechanisms observed during desiccation of the inner desiccation-tolerant leaves of the mature plants. The mesophyll tissues of these leaves become compact with extensive cell wall folding on drying. The bundle sheath cells maintained their shape with desiccation but became packed with small vacuoles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA