Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nano Lett ; 24(35): 10796-10804, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39190460

RESUMEN

Skyrmion Hall effect (SkHE) remains an obstacle for the application of magnetic skyrmions. While methods have been established to cancel or compensate SkHE in artificial antiferromagnets and ferrimagnets, eliminating intrinsic SkHE in ferromagnets is still a big challenge. Here, we propose a strategy to eliminate SkHE by intercalating nonmagnetic elements into van der Waals bilayer ferromagnets featuring in-plane ferromagnetism. The in-plane magnetism, along with a delicate balance among exchange interactions, Dzyaloshinskii-Moriya interactions (DMI), and magnetocrystalline anisotropy, creates interlayer bimerons/quadmerons, whose polarity can be controlled by DMI. Opposite DMI in the upper and lower layers results in opposite polarity and topological charge number Q-locking of topological spin texture, therefore, eliminating the SkHE. By intercalating Sr (Ba) in bilayer VSe2, we identify ten topological magnetic structures with zero topological charge number. Furthermore, we present a phase diagram illustrating diverse magnetic configurations achievable within the bimagnetic atomic layer, offering valuable guidance for future investigations.

2.
Nano Lett ; 24(7): 2345-2351, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334460

RESUMEN

Nonvolatile multistate manipulation of two-dimensional (2D) magnetic materials holds promise for low dissipation, highly integrated, and versatile spintronic devices. Here, utilizing density functional theory calculations and Monte Carlo simulations, we report the realization of nonvolatile and multistate control of topological magnetism in monolayer CrI3 by constructing multiferroic heterojunctions with quadruple-well ferroelectric (FE) materials. The Pt2Sn2Te6/CrI3 heterojunction exhibits multiple magnetic phases upon modulating FE polarization states of FE layers and interlayer sliding. These magnetic phases include Bloch-type skyrmions and ferromagnetism, as well as a newly discovered topological magnetic structure. We reveal that the Dzyaloshinskii-Moriya interaction (DMI) induced by interfacial coupling plays a crucial role in magnetic skyrmion manipulation, which aligns with the Fert-Levy mechanism. Moreover, a regular magnetic skyrmion lattice survives when removing a magnetic field, demonstrating its robustness. The work sheds light on an effective approach to nonvolatile and multistate control of 2D magnetic materials.

3.
J Am Chem Soc ; 146(30): 21160-21167, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39020477

RESUMEN

Realizating of a low work function (WF) and room-temperature stability in electrides is highly desired for various applications, such as electron emitters, catalysts, and ion batteries. Herein, a criterion based on the electron localization function (ELF) and projected density of states (PDOS) in the vacancy of the oxide electride [Ca24Al28O64]4+(4e-) (C12A7) was adopted to screen out 13 electrides in single-metal oxides. By creating oxygen vacancies in nonelectride oxides, we find out 9 of them showed vacancy-induced anionic electrons. Considering the thermodynamic stability, two electrides with ordered vacancies, Nb3O3 and Ce4O3, stand out and show vacancy-induced zero-dimensional anionic electrons. Both exhibit low WFs, namely 3.1 and 2.3 eV for Nb3O3 and Ce4O3, respectively. In the case of Nb3O3, the ELF at oxygen vacancies decreases first and then increases during the decrease in the total number of electrons in self-consistent calculations due to Nb's multivalent state. Meanwhile, Ce4O3 displays promise for ammonia synthesis due to its low hydrogen diffusion barrier and low activation energy. Further calculations revealed that CeO with disordered vacancies at low concentrations also exhibits electride-like properties, suggesting its potential as a substitute for Ce4O3.

4.
Nano Lett ; 23(10): 4634-4641, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37146245

RESUMEN

Databases for charge-neutral two-dimensional (2D) building blocks (BBs), i.e., 2D materials, have been built for years due to their applications in nanoelectronics. Though lots of solids are constructed from charged 2DBBs, a database for them is still missing. Here, we identify 1028 charged 2DBBs from Materials Project database using a topological-scaling algorithm. These BBs host versatile functionalities including superconductivity, magnetism, and topological properties. We construct layered materials by assembling these BBs considering valence state and lattice mismatch and predict 353 stable layered materials by high-throughput density functional theory calculations. These materials can not only inherit their functionalities but also show enhanced/emergent properties compared with their parent materials: CaAlSiF displays superconducting transition temperature higher than NaAlSi; Na2CuIO6 shows bipolar ferromagnetic semiconductivity and anomalous valley Hall effect that are absent in KCuIO6; LaRhGeO possesses nontrivial band topology. This database expands the design space of functional materials for fundamental research and potential applications.

5.
Angew Chem Int Ed Engl ; 62(38): e202307246, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37488928

RESUMEN

Core-shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high-quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential-limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1 mA cm-2 at 1.23 VRHE . This study introduces a new approach for constructing core-shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine.

6.
Nanotechnology ; 32(35)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34038884

RESUMEN

Van der Waals (vdW) heterojunctions constructed by vertical stacking two-dimensional transition metal dichalcogenides hold exciting promise in realizing future atomically thin electronic and optoelectronic devices. Recently, a Janus WSSe structure has been successfully synthesized by using chemical vapor deposition, selective epitaxy atomic replacement, and pulsed laser deposition methods. Herein, based on first-principles calculations, we introduce the structures and performances of MoS2/WSSe vdW heterojunctions with different interfaces and stacking modes. The vdW heterojunctions possess indirect band gaps for S-S interfaces, while direct band gaps for Se-S interfaces. Besides, the potential drop indicates an efficient separation of photogenerated charges. Interestingly, the opposite built-in electric fields formed in the vdW heterojunctions with a S-S interface and a Se-S interface suggest different charge transfer paths, which would motivate further theoretical and experimental investigations on charge transfer dynamics. Moreover, the electronic property is adjustable by applying external in-plane strains, accomplishing with indirect to direct bandgap transition and semiconductor to metal transition. The findings are helpful for the design of multi-functional high-performance electronic and optoelectronic devices based on the MoS2/WSSe vdW heterojunctions.

7.
Proc Natl Acad Sci U S A ; 115(28): E6411-E6417, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29946023

RESUMEN

Exciting advances have been made in artificial intelligence (AI) during recent decades. Among them, applications of machine learning (ML) and deep learning techniques brought human-competitive performances in various tasks of fields, including image recognition, speech recognition, and natural language understanding. Even in Go, the ancient game of profound complexity, the AI player has already beat human world champions convincingly with and without learning from the human. In this work, we show that our unsupervised machines (Atom2Vec) can learn the basic properties of atoms by themselves from the extensive database of known compounds and materials. These learned properties are represented in terms of high-dimensional vectors, and clustering of atoms in vector space classifies them into meaningful groups consistent with human knowledge. We use the atom vectors as basic input units for neural networks and other ML models designed and trained to predict materials properties, which demonstrate significant accuracy.

8.
Angew Chem Int Ed Engl ; 60(3): 1433-1440, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33006403

RESUMEN

The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe-metal-organic framework (NiFe-MOFs) was conformally coated on oxygen-vacancy-rich BiVO4 (Ov-BiVO4 ) as the protective layer and cocatalyst, forming a core-shell structure with caffeic acid as bridging agent. The as-synthesized Ov-BiVO4 @NiFe-MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm-2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)-O and elevated valence state of Ni(Fe) in NiFe-MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov-BiVO4 to NiFe-MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe-MOFs layer, leading to a photoanode of enhanced photocurrent and stability.

9.
Nanotechnology ; 31(10): 105703, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-31751954

RESUMEN

Alumina (Al2O3) is one of the most widely used ceramic materials for innumerable applications, due to its unique combination of attractive physical and mechanical properties. These intrinsic properties are dictated by the numerous phases that Al2O3 forms and its related phase transformations. Transition metal (TM) cation dopants (iron (Fe), cobalt (Co), nickel (Ni) and manganese (Mn)), even in sparse amounts, have been shown to significantly affect the phase transformation and microstructural evolution of Al2O3. Small concentrations of TM cation dopants have successfully been incorporated to synthesize magnetically active Al2O3, while reducing the θ to α phase transformation temperature by 150 °C, and maintaining the outstanding mechanical properties. In addition, first-principle calculations based on density-functional theory with hybrid functional (HSE06) and the PBE+U methods have provided a mechanistic understanding of the formation energy and magnetism of the TM-doped α and θ phases of Al2O3. The results reveal a potential route for phase transition regulation and external magnetic field-induced texturing of Al2O3 ceramics.

10.
Nano Lett ; 19(2): 761-769, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30621399

RESUMEN

Biaxial deformation of suspended membranes widely exists and is used in nanoindentation to probe elastic properties of structurally isotropic two-dimensional (2D) materials. However, the elastic properties and, in particular, the fracture behaviors of anisotropic 2D materials remain largely unclarified in the case of biaxial deformation. MoTe2 is a polymorphic 2D material with both isotropic (2H) and anisotropic (1T' and Td) phases and, therefore, an ideal system of single-stoichiometric materials with which to study these critical issues. Here, we report the elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2 by combining temperature-variant nanoindentation and first-principles calculations. It is found that due to similar atomic bonding, the effective moduli of the three phases deviate by less than 15%. However, the breaking strengths of distorted 1T' and Td phases are only half the value of 2H phase due to their uneven distribution of bonding strengths. Fractures of both isotropic 2H and anisotropic 1T' phases obey the theorem of minimum energy, forming triangular and linear fracture patterns, respectively, along the orientations parallel to Mo-Mo zigzag chains. Our findings not only provide a reference database for the elastic behaviors of versatile MoTe2 phases but also illuminate a general strategy for the mechanical investigation of any isotropic and anisotropic 2D materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA