Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Pathol ; 263(1): 74-88, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38411274

RESUMEN

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteínas Portadoras , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas de Microfilamentos , Sirtuinas , Humanos , Acetilación , Actinas/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Histona Acetiltransferasas/metabolismo , Metástasis Linfática , Sirtuinas/metabolismo
2.
New Phytol ; 233(5): 2155-2167, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34907539

RESUMEN

Phytoplankton are responsible for nearly half of global primary productivity and play crucial roles in the Earth's biogeochemical cycles. However, the long-term adaptive responses of phytoplankton to rising CO2 remains unknown. Here we examine the physiological and proteomics responses of a marine diatom, Phaeodactylum tricornutum, following long-term (c. 900 generations) selection to high CO2 conditions. Our results show that this diatom responds to long-term high CO2 selection by downregulating proteins involved in energy production (Calvin cycle, tricarboxylic acid cycle, glycolysis, oxidative pentose phosphate pathway), with a subsequent decrease in photosynthesis and respiration. Nearly similar extents of downregulation of photosynthesis and respiration allow the high CO2 -adapted populations to allocate the same fraction of carbon to growth, thereby maintaining their fitness during the long-term high CO2 selection. These results indicate an important role of metabolism reduction under high CO2 and shed new light on the adaptive mechanisms of phytoplankton in response to climate change.


Asunto(s)
Diatomeas , Fitoplancton , Aclimatación , Dióxido de Carbono/metabolismo , Diatomeas/metabolismo , Fotosíntesis/fisiología , Fitoplancton/metabolismo
3.
Sci Total Environ ; 771: 145167, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33736151

RESUMEN

Ocean acidification and warming are recognized as two major anthropogenic perturbations of the modern ocean. However, little is known about the adaptive response of phytoplankton to them. Here we examine the adaptation of a marine diatom Thalassiosira weissflogii to ocean acidification in combination with ocean warming. Our results show that ocean warming have a greater effect than acidification on the growth of T. weissflogii over the long-term selection experiment (~380 generations), as well as many temperature response traits (e.g., optimum temperatures for photosynthesis, maximal net photosynthetic oxygen evolution rates, activation energy) in thermal reaction norm. These results suggest that ocean warming is the main driver for the evolution of the marine diatom T. weissflogii, rather than oceanacidification. However, the evolution resulting from warming can be constrained by ocean acidification, where ocean warming did not impose any effects at high CO2 level. Furthermore, adaptations to ocean warming alone or to the combination of ocean acidification and warming come with trade-offs by inhibiting photochemical performances. The constrains and trade-offs associated with the adaptation to ocean acidification and warming demonstrated in this study, should be considered for parameterizing evolutionary responses in eco-evolutionary models of phytoplankton dynamics in a future ocean.


Asunto(s)
Diatomeas , Aclimatación , Calentamiento Global , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
4.
Front Microbiol ; 12: 748445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721350

RESUMEN

Ocean acidification is recognized as a major anthropogenic perturbation of the modern ocean. While extensive studies have been carried out to explore the short-term physiological responses of phytoplankton to ocean acidification, little is known about their lipidomic responses after a long-term ocean acidification adaptation. Here we perform the lipidomic analysis of a marine diatom Phaeodactylum tricornutum following long-term (∼400 days) selection to ocean acidification conditions. We identified a total of 476 lipid metabolites in long-term high CO2 (i.e., ocean acidification condition) and low CO2 (i.e., ambient condition) selected P. tricornutum cells. Our results further show that long-term high CO2 selection triggered substantial changes in lipid metabolites by down- and up-regulating 33 and 42 lipid metabolites. While monogalactosyldiacylglycerol (MGDG) was significantly down-regulated in the long-term high CO2 selected conditions, the majority (∼80%) of phosphatidylglycerol (PG) was up-regulated. The tightly coupled regulations (positively or negatively correlated) of significantly regulated lipid metabolites suggest that the lipid remodeling is an organismal adaptation strategy of marine diatoms to ongoing ocean acidification. Since the composition and content of lipids are crucial for marine food quality, and these changes can be transferred to high trophic levels, our results highlight the importance of determining the long-term adaptation of lipids in marine producers in predicting the ecological consequences of climate change.

5.
Mar Environ Res ; 154: 104871, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31928985

RESUMEN

In this study, we examined the effects of increased temperature (15, 20 and 25 °C) and different light levels (50, 200 µmol photons m-2 s-1) on two widely distributed diatoms, namely Phaeodactylum tricornutum and Thalassiosira weissflogii. Results showed that increasing light level counteracted the negative effects of high temperature on photosynthesis in both species, suggesting an antagonistic interaction between light and temperature. Contrary to the above results, light limitation diminished the temperature-sensitivity of carbonic anhydrase activity in two diatoms. We also observed species-specific responses of biomass, where increased temperature significantly decreased the biomass of P. tricornutum at both low and high light levels but showed no effects on T. weissflogii. Our study demonstrated that light can alter the physiological responses of diatoms to temperature but also revealed interspecific variations. We predict that in the future ocean with shallower upper mixed layer, T. weissflogii may be more competitive than P. tricornutum.


Asunto(s)
Diatomeas , Biomasa , Luz , Fotosíntesis , Especificidad de la Especie , Temperatura
6.
Drug Metab Dispos ; 31(4): 392-7, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12642464

RESUMEN

Signal transducer and activator of transcription (Stat), a family of transcriptional factors, has been demonstrated to play a critical role in gene regulation in response to inflammatory cytokines, such as interferon and interleukin-6. Inflammatory cytokines and bacterial endotoxin are known to suppress, in most of cases, the constitutive or induced cytochromes P450 (P450) in animals and humans. However, it is not clear if the suppression of P450 by cytokines is through the Stat-signaling pathway. In the present study, we determined whether Stat1 is involved in lipopolysaccharide (LPS)-mediated modulation of P450 in mouse liver. In both Stat1(+/+) (wild type) and Stat1(-/-) (null) mice, a single dose of LPS treatment (1 mg/kg of body weight, i.p.) significantly reduced the expression of CYP3A11, 2C29, and 1A2 mRNA to 8 to 40% of the control levels as determined by real-time quantitative reverse transcription-polymerase chain reaction. The reduction was supported by Western blot analysis. In contrast, LPS significantly induced the level of CYP4A10 mRNA in both Stat1(+/+) (338% of control) and Stat1(-/-) mice (264% of control). Although suppression of mRNA levels of CYP2E1, and 2D9 was not observed in either LPS-treated Stat1 null or wild-type animals, LPS treatment resulted in a reduction of CYP2E1 protein content, which was more significant in Stat1(+/+) (23% of control) than in Stat1(-/-) mice (67% of control). Consistent with this result, the chlorzoxazone 6-hydroxylase and lauric acid 11-hydroxylase activities, as CYP2E1 representative activities, were reduced markedly by LPS in Stat1(+/+) but not in Stat1(-/-) mice. The ethoxyresorufin O-deethylase activity, as a representative CYP1A activity, was also reduced significantly only in LPS-treated Stat1(+/+) mice. These data clearly demonstrate that LPS-mediated modulation of CYP3A11, 2B10, 2C29, 1A2, and 4A10 in mouse liver is Stat1-independent. However, the significant difference between the LPS-treated Stat1(+/+) and Stat1(-/-) mice in the levels of CYP2E1 protein and activity as well as in the activity level of CYP1A suggests that Stat1 may be indirectly involved in the post-transcriptional modulation of these two mouse P450 enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Unión al ADN/metabolismo , Lipopolisacáridos/farmacología , Microsomas Hepáticos/efectos de los fármacos , Proteínas de la Leche , Transactivadores/metabolismo , Animales , Bacterias , Sistema Enzimático del Citocromo P-450/clasificación , Cartilla de ADN/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Immunoblotting/métodos , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Microsomas Hepáticos/enzimología , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factor de Transcripción STAT1 , Factor de Transcripción STAT3 , Factor de Transcripción STAT5 , Transactivadores/deficiencia , Transactivadores/genética
7.
Anal Biochem ; 316(1): 103-10, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12694732

RESUMEN

There is considerable interindividual variation in man's ability to metabolize drugs and foreign compounds. These differences can partly be attributed to genetic polymorphisms that result in the generation of multiple phenotypes with different drug-metabolizing capabilities. Genetically derived differences can easily be assessed by genotyping assays in cases where the polymorphism has been identified. However, many of the polymorphisms that result in these are not known, secondly not all the differences can be attributed to genetic polymorphisms, hence genotyping methods cannot be employed. We have therefore, developed real-time (Taqman) PCR assays to quantitate levels of P450 mRNAs in human tissues. These assays are highly sensitive, reproducible, and specific and will allow quantitation of P450 mRNA levels in various human tissues. We have applied these assays to quantitate cytochrome P450 mRNA levels in human skin samples from 27 healthy volunteers. The expression of 13 P450s was assessed. The major enzymes detected were CYP1B1, CYP2B6, CYP2D6, and CYP3A4 with mean values of 2.5, 2.6, 2.7, and 1.1 fg/18S rRNA in 50ng total RNA, respectively. Lower levels of CYP2C18, CYP2C19, and CYP3A5 were also detected while CYP1A2, 2A6, and 2C8 were below limits of detection. There was interindividual variation in the levels of mRNA among the 27 subjects studied although Poisson analysis showed data to be normally distributed, except for CYP2B6, as some individuals completely lacked CYP2B6 mRNA.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , ARN Mensajero/metabolismo , Piel/metabolismo , Cartilla de ADN/genética , Sondas de ADN/genética , Humanos , Isoenzimas/genética , ARN Mensajero/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA