Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Exp Cell Res ; 410(1): 112951, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843715

RESUMEN

Endoreplication, known as endocycles or endoreduplication, is a cell cycle variant in which the genomic DNA is re-replicated without mitosis leading to polyploidy. Endoreplication is essential for the development and functioning of the different organs in animals and plants. Deletion of Geminin, a DNA replication licensing inhibitor, causes DNA re-replication or damage. However, the role of Geminin in endoreplication is still unclear. Here, we studied the role of Geminin in the endoreplication of the silk gland cells of silkworms by constructing two transgenic silkworm strains, including BmGeminin1-overexpression and BmGeminin1-RNA interference. Interference of BmGeminin1 led to body weight gain, increased silk gland volume, increased DNA content, and enhanced DNA re-replication activity relative to wild-type Dazao. Meanwhile, overexpression of BmGeminin1 showed an opposite phenotype compared to the BmGem1-RNAi strain. Furthermore, RNA-sequencing of the transgenic strains was carried out to explore how BmGeminin1 regulates DNA re-replication. Our data demonstrated a vital role of Geminin in the regulation of endoreplication in the silk gland of silkworms.


Asunto(s)
Bombyx/genética , Replicación del ADN/genética , Geminina/genética , Seda/genética , Animales , Bombyx/metabolismo , Ciclo Celular/genética , Geminina/antagonistas & inhibidores , Mitosis/genética , Interferencia de ARN , Seda/biosíntesis
2.
Pestic Biochem Physiol ; 191: 105380, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963947

RESUMEN

Apoptosis, as an important part of the immune response, is one of the core events in the host-virus interaction. Studies have shown that long non-coding RNAs (lncRNAs) play important roles in the process of cell apoptosis and pathophysiology. To investigate the apoptosis-related lncRNAs involved in Bombyx mori nucleopolyhedrovirus (BmNPV) infecting silkworms, transcriptome sequencing was conducted based on silkworm cells infected with BmNPV before and after B. mori inhibitor of apoptosis (Bmiap) gene knockout. A total of 23 differentially expressed lncRNAs were identified as being associated with the mitochondrial apoptosis pathway. Moreover, we demonstrated that B. mori LINC5438 has the function of inhibiting apoptosis in silkworm cells. Overexpression of LINC5438 promoted the proliferation of BmNPV, while interference with LINC5438 inhibited its proliferation, indicating that LINC5438 plays an important role in BmNPV infection. Our results also showed that LINC5438 can regulate the expression of Bmiap, BmDronc, BmICE, and its predicted target gene BmAIF, suggesting that LINC5438 may function through the mitochondrial pathway. These findings provide important insights into the mechanisms of virus-host interaction and the applications of baculoviruses as biological insecticides.


Asunto(s)
Bombyx , ARN Largo no Codificante , Animales , Bombyx/metabolismo , ARN Largo no Codificante/genética , Apoptosis , Proliferación Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142194

RESUMEN

The immediate early protein 1 (IE1) acts as a transcriptional activator and is essential for viral gene transcription and viral DNA replication. However, the key regulatory domains of IE1 remain poorly understood. Here, we analyzed the sequence characteristics of Bombyx mori nucleopolyhedrovirus (BmNPV) IE1 and identified the key functional domains of BmNPV IE1 by stepwise truncation. Our results showed that BmNPV IE1 was highly similar to Autographa californica nucleopolyhedrovirus (AcMNPV) IE1, but was less conserved with IE1 of other baculoviruses, the C-terminus of IE1 was more conserved than the N-terminus, and BmNPV IE1 was also necessary for BmNPV proliferation. Moreover, we found that IE1158-208 was a major nuclear localization element, and IE11-157 and IE1539-559 were minor nuclear localization elements, but the combination of these two minor elements was equally sufficient to fully mediate the nuclear entry of IE1. Meanwhile, IE11-258, IE1560-584, and the association of amino acids 258 and 259 were indispensable for the transactivation activity of BmNPV IE1. These results systematically resolve the functional domains of BmNPV IE1, which contribute to the understanding of the mechanism of baculovirus infection and provide a possibility to synthesize a small molecule IE1-truncated mutant as an agonist or antagonist.


Asunto(s)
Bombyx , Replicación del ADN , Aminoácidos/metabolismo , Animales , Bombyx/metabolismo , ADN Viral , Regulación Viral de la Expresión Génica , Proteínas de Insectos/genética , Nucleopoliedrovirus , Transactivadores/metabolismo , Replicación Viral
4.
Pestic Biochem Physiol ; 174: 104809, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33838710

RESUMEN

Energy metabolism is important for the proliferation of microsporidia in infected host cells, but there is limited information on the host response. The energy metabolism response of silkworm (Bombyx mori) to microsporidia may help manage Nosema bombycis infections. We analyzed differentially expressed genes in the B.mori midgut transcriptome at two significant time points of microsporidia infection. A total of 1448 genes were up-regulated, while 315 genes were down-regulated. A high proportion of genes were involved in the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, and glycerolipid metabolism at 48 h post infection (h p.i.), and a large number of genes were involved in the TCA cycle and protein processing at 120 h p.i. These results showed that the early stages of microsporidia infection affected the basic metabolism and biosynthesis processes of the silkworm. Knockout of Bm_nscaf2860_46 (Bombyx mori isocitrate dehydrogenase, BmIDH) and Bm_nscaf3027_062 (Bombyx mori hexokinase, BmHXK) reduced the production of ATP and inhibited microsporidia proliferation. Host fatty acid degradation, glycerol metabolism, glycolysis pathway, and TCA cycle response to microsporidia infection were also analyzed, and their importance to microsporidia proliferation was verified. These results increase our understanding of the molecular mechanisms involved in N. bombycis infection and provide new insights for research on microsporidia control. IMPORTANCE: Nosema bombycis can be vertically transmitted in silkworm eggs. The traditional prevention and control strategies for microsporidia are difficult and time-consuming, and this is a problem in silkworm culture. Research has mainly focused on host gene functions related to microsporidia infection and host immune responses after microsporidia infection. Little is known about the metabolic changes occurring in the host after infection. Understanding the metabolic changes in the silkworm host could aid in the recognition of host genes important for microsporidia infection and growth. We analyzed host metabolic changes and the main participating pathways at two time points after microsporidia infection and screened the microsporidia-dependent host energy metabolism genes BmIDH and BmHXK. The results revealed genes that are important for the proliferation of Nosema bombycis. These results illustrate how microsporidia hijack the host genome for their growth and reproduction.


Asunto(s)
Bombyx , Nosema , Animales , Bombyx/genética , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Nosema/genética
5.
Pestic Biochem Physiol ; 178: 104923, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34446199

RESUMEN

Cell division cycle protein 37 (Cdc37) is a molecular chaperone that actively participates in many intracellular physiological and biochemical processes as well as pathogen infection. However, the function of Cdc37 in silkworm cells under Bombyx mori nucleopolyhedrovirus (BmNPV) infection is unknown. We cloned and identified BmCdc37, a Cdc37 gene from B. mori, which is highly conserved among other species. After BmNPV infection, the expression level of the BmCdc37 gene was up-regulated and showed an expression pattern similar to the BmHsp90 gene, which relies on Cdc37 to stabilize and activate specific protein kinases. The immunofluorescence, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP) assays all indicated that BmCdc37 interacts with BmHsp90 in silkworm cells. Both BmCdc37 and BmHsp90 promote the reproduction of BmNPV. Co-expression of BmCdc37 and BmHsp90 was better at promoting virus proliferation than overexpression alone. These findings all indicate that BmCdc37 plays an active role in the proliferation of BmNPV.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Interacciones Huésped-Patógeno , Proteínas de Insectos/genética , Nucleopoliedrovirus
6.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070691

RESUMEN

The trachea of insects is a tubular epithelia tissue that transports oxygen and other gases. It serves as a useful model for the studying of the cellular and molecular events involved in epithelial tube formation. Almost all of the extracellular matrix can be degraded by Matrix metalloproteinases (MMPs), which is closely related to the processes of development and regeneration. The regulation of trachea by MMPs is roughly known in previous studies, but the detailed regulation mechanism and involved gene function are not fully explored. In this article, we found MMP1 expressed highly during tracheal remodeling, and knocked out it makes the tracheal branch number reduced in Bombyx mori. In trachea of transgenic BmMMP1-KO silkworm, the space expanding of taenidium and epidermal cells and the structure of apical membrane were abnormal. To explore the underlying mechanism, we detected that DE-cadherin and Integrin ß1 were accumulated in trachea of transgenic BmMMP1-KO silkworm by immunohistochemistry. Moreover, 5-Bromo-2'-Deoxyuridine (BrdU) labeling showed that knockout of BmMMP1 in silkworm inhibited tracheal cell proliferation, and BmMMP1 also regulated the proliferation and migration of BmNS cells. All of the results demonstrated that BmMMP1 regulates the development of the tracheal tissue by expanding the space of tracheal cuticles and increases the number of tracheal branches by degrading DE-cadherin and Integrin ß1.


Asunto(s)
Bombyx , Proteínas de Insectos , Metaloproteinasa 1 de la Matriz , Organogénesis , Tráquea/enzimología , Animales , Bombyx/enzimología , Bombyx/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo
7.
Biotechnol Lett ; 42(11): 2111-2122, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32533375

RESUMEN

OBJECTIVE: Rapid and convenient detection of protein-protein interactions (PPIs) is of great significance for understanding function of protein. RESULTS: For efficiently detecting PPIs, we used the changes of proteins fluorescence localization to design a novel system, fluorescence translocation co-localization (FTCL), based on nuclear localization signal (NLS) in living cells. Depending on the original state of protein localization (both in the cytoplasm, both in the nucleus, one in the nucleus and another in the cytoplasm), two target proteins can be partitioned into the cytoplasm and nucleus by adding a NLS or mutating an existing NLS. Three independent results display that the changes of protein fluorescence co-localization were observed following co-expression of the two target proteins. At the same time, we verified the accuracy of fluorescence co-localization by co-immunoprecipitation. CONCLUSIONS: There FTCL system provided a novel detection method for PPIs, regardless of protein localization in the nucleus or cytoplasm. More importantly, this study provides a new strategy for future protein interaction studies through organelle localization (such as mitochondria, Golgi and cytomembrane, etc.).


Asunto(s)
Bombyx/metabolismo , Proteínas de Insectos/metabolismo , Proteínas Luminiscentes/genética , Señales de Localización Nuclear/metabolismo , Animales , Línea Celular , Núcleo Celular/química , Citoplasma/química , Femenino , Inmunoprecipitación , Proteínas de Insectos/química , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Plásmidos/genética , Mapas de Interacción de Proteínas , Transporte de Proteínas
8.
Pestic Biochem Physiol ; 157: 143-151, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31153462

RESUMEN

Autophagy is a cell adaptive response that involves the process of microbial infections. Our previous study has indicated that Bombyx mori nucleopolyhedrovirus (BmNPV) infection triggers the complete autophagic process in BmN-SWU1 cells, which is beneficial to the viral infection. Autophagy-related (ATG) protein ATG13, as part of the ULK complex (a serine-threonine kinase complex composed of ULK1, ULK2, ATG13, ATG101, and FIP200), is the most upstream component of the autophagy pathway, and how it affects virus infections will improve our understanding of the interaction between the virus and the host. This study has determined that the overexpression of the BmAtg13 gene promotes the expression of viral genes and increases viral production in BmN-SWU1 cells, whereas knocking down the BmAtg13 gene suppresses BmNPV replication. Moreover, the BmAtg13 overexpression transgenic line contributed to viral replication and increased mortality rate of BmNPV infection. In contrast, the BmAtg13 knockout transgenic line reduced viral replication 96 h post-infection. Furthermore, BmATG13 directly interacted with viral protein BRO-B, forming a protein complex. Taken together, the findings of this study suggest that BmATG13 may be utilized by the BRO-B protein to promote BmNPV replication and proliferation, which, in turn, provides important insights into the mechanism that autophagy influences viral infection.


Asunto(s)
Proteínas de Insectos/metabolismo , Nucleopoliedrovirus/patogenicidad , Replicación Viral/fisiología , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Proteínas de Insectos/genética , Unión Proteica , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
9.
Pestic Biochem Physiol ; 154: 88-96, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30765061

RESUMEN

Melanization mediated by the prophenoloxidase-activating system (proPO) is an important immune response in invertebrates. However, the role of melanization on viral infection has not been wildly revealed in Bombyx mori (B. mori), silkworm. Here, we investigated the extent of melanization of susceptible (871) and resistant (near-isogenic line 871C) B. mori strains. The result showed that the extent of melanization was significantly higher in the susceptible strain than in the resistant strain. A majority of Serpins were up-regulated in the resistant strain through iTRAQ-based quantitative proteomics, comparing with susceptible strain. Our data further identified that Serpin-5, Serpin-9 and Serpin-19 reduced PO activity, indicating that the menlanization pathway was inhibited in the resistant strain. Moreover, our results indicated that the hemolymph of 871 reduced viral infection in the presence of PTU, indicating that melanization of 871 strain hemolymph blocked viral infection. However, viral infection was significantly suppressed in the hemolymph of 871C strain regardless of the presence of PTU or not, which implied that the resistant strain inhibited viral infection independent of the melanization pathway. Taken together, our findings indicated that the melanization pathway was inhibited in resistant strain. These results expend the analysis of melanization pathway in insects and provide insights into understanding the antiviral mechanism.


Asunto(s)
Baculoviridae/fisiología , Bombyx/fisiología , Bombyx/virología , Resistencia a la Enfermedad/fisiología , Larva/fisiología , Larva/virología , Animales , Catecol Oxidasa/metabolismo , Precursores Enzimáticos/metabolismo , Hemolinfa/metabolismo , Hemolinfa/virología , Interacciones Huésped-Patógeno , Proteínas de Insectos/metabolismo , Melaninas/metabolismo , Serpinas/metabolismo
10.
Appl Microbiol Biotechnol ; 102(21): 9255-9265, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30151606

RESUMEN

The CRISPR/Cas9 system is a powerful genetic engineering technique that has been widely used in gene therapy, as well as in the development of novel antimicrobials and transgenic insects. However, several challenges, including the lack of effective host target genes and the off-target effects, limit the application of CRISPR/Cas9 in insects. To mitigate these difficulties, we established a highly efficient virus-inducible CRISPR/Cas9 system in transgenic silkworms. This system includes the baculovirus-inducible promoter 39K, which directs transcription of the gene encoding, the Cas9 protein, and the U6 promoter which targets the sgATAD3A site of the ATPase family AAA domain-containing protein 3 (ATAD3A) gene. The double-positive transgenic line sgATAD3A×39K-Cas9 (ATAD3A-KO) was obtained by hybridization; antiviral activity in this hybrid transgenic line is induced only after Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The BmNPV-inducible system significantly reduced off-target effects and did not affect the economically important characteristics of the transgenic silkworms. Most importantly, this novel system efficiently and consistently edited target genes, inhibiting BmNPV replication after the transgenic silkworms were inoculated with occlusion bodies (OBs). The suppression of BmNPV by the virus-inducible system was comparable to that of the stably expressed CRISPR/Cas9 system. Therefore, we successfully established a highly efficient BmNPV-inducible ATAD3A-KO transgenic silkworm line, with improved gene targeting specificity and antiviral efficiency. Our study thereby provides insights into the treatment of infectious diseases and into the control of insect pests.


Asunto(s)
Animales Modificados Genéticamente/genética , Baculoviridae/genética , Bombyx/genética , Sistemas CRISPR-Cas/genética , Animales , Bombyx/virología , Marcación de Gen/métodos , Vectores Genéticos/genética , Nucleopoliedrovirus/genética , Control de Plagas/métodos , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética
11.
Biochem Biophys Res Commun ; 490(4): 1254-1259, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28684317

RESUMEN

Our previous studies have indicated that Bombyx mori receptor expression enhancing protein a (BmREEPa) could participate in BV invasion in vivo and in vitro, however, the mechanism is still unclear. In this study, we screened BmREEPa interacting protein through co-immunoprecipitation and finally identified a membrane protein, Bombyx mori patched domain containing protein (BmPtchd, KR338939), which contains receptor activity. Further studies showed that BmPtchd, BmREEPa and Glycoprotein 64 could form a protein complex and the expression level of BmREEPa and BmPtchd could be affected by cellular cholesterol level. These findings may provide an important basis for explaining the invasion mechanism of Bombyx mori Nucleopolyhedrovirus budded virus.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Bombyx , Línea Celular , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas del Envoltorio Viral/genética
12.
Biochem Biophys Res Commun ; 482(4): 1484-1490, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27965095

RESUMEN

B.mori nucleopolyhedrovirus (BmNPV), which produces BV and ODV two virion phenotypes in its life cycle, caused the amount of economic loss in sericulture. But the mechanism of its infection was still unclear. In this study we characterized B.mori nuclear hormone receptor 96 (BmNHR96) as a NHR96 family member, which was localized in the nucleus. We also found BmNHR96 over-expression could enhance the entry of BV as well as cellular cholesterol level. Furthermore, we validated that BmNHR96 increased membrane fusion mediated by GP64, which could probably promote BV-infection. In summary, our study suggested that BmNHR96 plays an important role in BV infection and this function probably actualized by affecting cellular cholesterol level, and our results provided insights to the mechanisms of BV-infection of B.mori.


Asunto(s)
Bombyx/virología , Nucleopoliedrovirus/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Virales/genética , Replicación Viral , Secuencias de Aminoácidos , Animales , Bombyx/metabolismo , Línea Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Colesterol/química , Clonación Molecular , Citoplasma/metabolismo , Fusión de Membrana , Microdominios de Membrana/química , Nucleopoliedrovirus/fisiología , Fenotipo
13.
Biochem Biophys Res Commun ; 483(2): 855-859, 2017 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-28069383

RESUMEN

Our previous study has identified a gene, BmREEPa, which affects BmNPV invasion in silkworm cells. In this study, we interfered with BmREEPa in silkworm larvae through transgenic technology and screened BmREEPa-RNAi silkworm strains (RP). We found the mortality in RP was lower than that in Dazao, when silkworm larvae were infected with BmNPV via oral and injection routes. And the expression level of VP39 was lower in RP than in Dazao in the group infected via injection. In the oral infection group, VP39 expression level showed significant reduction at 48 h post-infection. These results revealed that the anti-BmNPV activity was enhanced in RP, and this enhancement probably presents itself during secondary infection via BVs.


Asunto(s)
Bombyx/genética , Bombyx/virología , Genes de Insecto , Nucleopoliedrovirus/patogenicidad , Animales , Animales Modificados Genéticamente , Expresión Génica , Genes Virales , Nucleopoliedrovirus/genética , Interferencia de ARN
14.
Biochem Biophys Res Commun ; 493(1): 332-339, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28888987

RESUMEN

We previously identified a nuclear hormone receptor gene, BmNHR96, which promotes Bombyx mori nucleopolyhedrovirus (BmNPV) entry into silkworm cells. In an attempt to create an antiviral silkworm strain for better silk production, we used RNAi to downregulate BmNHR96 in silkworm larvae. We screened the resulting BmNHR96-RNAi silkworm strain (NHR) and also explored the antiviral mechanism in vivo. We found that the survival rate of the NHR strain was higher than that of the Dazao strain, when silkworm larvae were infected with BmNPV via oral ODV infection and BV injection. More importantly, the economic characteristics (silk yield) of the transgenic line remained unchanged. These findings reveal that RNAi of BmNHR96 could be an effective way to enhance the tolerance of B. mori to BmNPV infection.


Asunto(s)
Bombyx/genética , Bombyx/virología , Nucleopoliedrovirus/fisiología , Interferencia de ARN , ARN Viral/genética , Receptores Citoplasmáticos y Nucleares/genética , Animales , Animales Modificados Genéticamente
15.
Phytother Res ; 31(12): 1842-1848, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29024160

RESUMEN

Morus alba L. (mulberry) twig is known to have an inhibitory effect on pathogens in traditional Chinese medicine. In the present study, the dermophytic fungus, Trichophyton rubrum, was used to evaluate the inhibitory effect of total M. alba twig extract and extracts obtained using solvents with different polarities by the method of 96-well MTT colorimetry. The main active substance was isolated and identified by tracking its activity. In addition, the inhibitory effects of active extracts and a single active substance were investigated in combination with miconazole nitrate. Our data indicated that ethyl acetate extracts of mulberry twig (TEE) exhibited a desired inhibitory activity on T. rubrum with the minimum inhibitory concentration (MIC) of 1.000 mg/mL. With activity tracking, the main substance showing antimicrobial activity was oxyresveratrol (OXY), which was isolated from TEE. Its MIC for inhibiting the growth of T. rubrum was 0.500 mg/mL. The combined use of miconazole nitrate and OXY showed a synergistic inhibitory effect, as shown by a significant decrease in the MIC of both components. Based on the OXY content in TEE, the contribution rate of OXY to the inhibitory effect of TEE on T. rubrum was 80.52%, so it was determined to be the main antimicrobial substance in M. alba twig. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Medicamentos Herbarios Chinos/química , Morus/química , Extractos Vegetales/química , Estilbenos/farmacología , Tiña del Pie/tratamiento farmacológico , Trichophyton/efectos de los fármacos , Estilbenos/química
16.
Pestic Biochem Physiol ; 127: 15-20, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26821653

RESUMEN

10-Hydroxycamptothecin (HCPT), a plant alkaloid isolated from Camptotheca acuminate, is known as a planted-derived insecticide, however, the specific mechanism in insect cells is still unclear. In this study, we treated the ovarian cell line of the silkworm, BmN-SWU1, with different HCPT doses for durations ranging from 0 to 72h. The apoptosis morphology was evident after 72h of incubation and included cell protuberance, concentrated cytoplasm and apoptotic bodies. We observed DNA fragmentation and cell apoptosis after HCPT treatment. The disruption of mitochondrial distribution, activation of the intracellular mitochondrial permeability transition pore, and release of cytochrome c during HCPT-induced apoptosis in dose and time-dependent manner indicate the involvement of mitochondria in BmN-SWU1 cells. Caspase-9 and -3 activities increased gradually with the duration of incubation time. In conclusion, HCPT has a significant effect to initiate the intrinsic mitochondrial pathway in silkworm cells, providing a theoretical basis for better application of plant-derived insecticide in pest control.


Asunto(s)
Camptotecina/análogos & derivados , Mitocondrias/efectos de los fármacos , Animales , Apoptosis , Bombyx , Camptotecina/farmacología , Línea Celular , Femenino , Ovario/citología
17.
Biochem Biophys Res Commun ; 447(2): 237-43, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24690173

RESUMEN

Bcl-2 family proteins have been reported previously to play important roles in the mitochondrial apoptotic pathway. Particularly, Bmbuffy has been identified as a key homologue of Bcl-2 in silkworm; however, its exact function is unknown. In this study, we investigated the role of Bmbuffy in hydroxycamptothecine (HCPT)-induced apoptosis of BmN-SWU1 cells. By conducting confocal microscopy studies, we found that Bmbuffy is located on the outer membrane of mitochondria and endoplasmic reticulum (ER). Furthermore, we discovered that the hydrophobic transmembrane domain at the COOH terminus is a putative anchor for the subcellular localization of Bmbuffy. Overexpression of Bmbuffy inhibited cytochrome c release, activation of caspase-3 and cell apoptosis, while RNAi-mediated silencing of Bmbuffy promoted apoptosis. In the absence of a hydrophobic membrane anchor, we revealed that Bmbuffy is unable to block apoptosis. These results indicate that Bmbuffy acts as an anti-apoptotic protein, located on the mitochondrial outer membrane and is involved in the mitochondrial apoptotic pathway. Moreover, in HCPT-induced apoptosis, we showed that the translocation of endogenous Bmp53 from the nucleus to the mitochondria is a slow and progressive process, followed by cytochrome c release. This suggests that mitochondrial Bmp53 accumulation may contribute to membrane permeability. The co-localization of Bmp53 and Bmbuffy suggests the interaction of the two proteins, which was further confirmed by Co-IP assay. In addition, overexpression of Bmp53 increased cytochrome c release and the cell apoptotic rate, whereas Bmbuffy overexpression blocked these. All the data suggest that Bmbuffy functions as an anti-apoptotic protein and interacts with Bmp53 in HCPT-induced apoptosis of silkworm cells.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Bombyx/metabolismo , Proteínas de Insectos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Camptotecina/análogos & derivados , Camptotecina/farmacología , Caspasa 3/metabolismo , Línea Celular , Citocromos c/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Mitocondriales/metabolismo , Permeabilidad , Proteína p53 Supresora de Tumor/metabolismo
18.
Biochem Biophys Res Commun ; 445(1): 100-6, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24491540

RESUMEN

In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells.


Asunto(s)
Apoptosis , Bombyx/metabolismo , Caspasa 9/metabolismo , Proteínas de Insectos/metabolismo , Animales , Bombyx/citología , Bombyx/genética , Caspasa 9/genética , Línea Celular , Dactinomicina/farmacología , Escherichia coli/genética , Humanos , Immunoblotting , Proteínas de Insectos/genética , Microscopía Confocal , Proteolisis/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Células Sf9 , Especificidad de la Especie , Spodoptera , Especificidad por Sustrato
19.
Int J Biol Macromol ; 278(Pt 2): 134773, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151843

RESUMEN

Viral diseases pose a significant threat to livestock husbandry and plant cultivation. CRISPR/Cas9-mediated targeted editing of viral genes offers a promising approach to antiviral therapy. The silkworm, Bombyx mori, is an economically important insect susceptible to infection by B. mori nucleopolyhedrovirus (BmNPV), and viral outbreaks cause severe economic losses to the sericulture industry. Here, we identified BmNPV orf76 as a viral late gene that is highly similar to Autographa californica multiple nucleopolyhedrovirus Ac93. The deletion of orf76 abolished BmNPV proliferation and hindered the production of infectious budded viruses. We generated a transgenic line, Cas9(+)/sgorf76(+), that did not affect the growth or development of the silkworm and demonstrated that the transgenic line Cas9(+)/sgorf76(+) efficiently cleaved orf76 at the sgorf76 site, resulting in large deletions at 120 h post-infection, with no observed off-target effects. Survival analyses revealed that the transgenic line Cas9(+)/sgorf76(+) exhibited significantly higher survival rates than the control lines Cas9(-)/sgorf76(-), regardless of the BmNPV inoculation dose. Additionally, the number of BmNPV DNA copies and the expression levels of viral genes were markedly inhibited in the transgenic line Cas9(+)/sgorf76(+) compared with the control line Cas9(-)/sgorf76(-). The results provide a promising target for Cas9-mediated antiviral therapy against BmNPV, and the findings provide new insights for baculovirus gene function studies and lepidopteran pest control.


Asunto(s)
Animales Modificados Genéticamente , Bombyx , Sistemas CRISPR-Cas , Nucleopoliedrovirus , Animales , Bombyx/virología , Bombyx/genética , Nucleopoliedrovirus/genética , Antivirales/farmacología , Edición Génica/métodos , Sistemas de Lectura Abierta/genética , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
20.
Pest Manag Sci ; 80(9): 4564-4574, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38742692

RESUMEN

BACKGROUND: Bombyx mori nuclear polyhedrosis virus (BmNPV), as a typical baculovirus, is the primary pathogen that infects the silkworm B. mori, a lepidopteran species. Owing to the high biological safety of BmNPV in infecting insects, it is commonly utilized as a biological insecticide for pest control. Apoptosis is important in the interaction between the host and pathogenic microorganisms. MicroRNAs (miRNAs) influence immune responses and promote stability of the immune system via apoptosis. Therefore, the study of apoptosis-related miRNA in silkworms during virus infection can not only provide support for standardizing the prevention and control of diseases and insect pests, but also reduce the economic losses to sericulture caused by the misuse of biological pesticides. RESULTS: Through transcriptome sequencing, we identified a miRNA, miR-31-5p, and demonstrated that it can inhibit apoptosis in silkworm cells and promote the proliferation of BmNPV in BmE-SWU1 cells. We identified a target gene of miR-31-5p, B. mori cytochrome P450 9e2 (BmCYP9e2), and demonstrated that it can promote apoptosis in silkworm cells and inhibit the proliferation of BmNPV. Moreover, we constructed transgenic silkworm strains with miR-31-5p knockout and confirmed that they can inhibit the proliferation of BmNPV. CONCLUSION: These data indicate that miR-31-5p may exert functions of inhibiting apoptosis and promoting virus proliferation by regulating BmCYP9e2. The findings demonstrate how miRNAs influence host cell apoptosis and how they are involved in the host immune system response to viruses, providing important insights into the applications of biological insecticides for pest control. © 2024 Society of Chemical Industry.


Asunto(s)
Apoptosis , Bombyx , Sistema Enzimático del Citocromo P-450 , Proteínas de Insectos , MicroARNs , Nucleopoliedrovirus , Animales , Bombyx/genética , Bombyx/virología , Bombyx/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/metabolismo , Nucleopoliedrovirus/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Replicación Viral/efectos de los fármacos , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA