Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(10): e1011565, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37844070

RESUMEN

Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered. Using recent advances in structure prediction and experimental structures, we show that roughly 40% of these regions form well-structured helices. Features often used to predict disorder-high charge density, low hydrophobicity, low sequence complexity, and evolutionarily varying length-are also compatible with solvated, variable-length helices. We show that a simple composition classifier predicts the existence of structure far better than well-established heuristics based on charge and hydropathy. We show that helical structure is more prevalent than previously appreciated in highly charged regions of diverse proteomes and characterize the conservation of highly charged regions. Our results underscore the importance of integrating, rather than choosing between, structure- and disorder-based approaches.


Asunto(s)
Proteoma , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Dominios Proteicos
2.
ArXiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38351929

RESUMEN

For the vast majority of genes in sequenced genomes, there is limited understanding of how they are regulated. Without such knowledge, it is not possible to perform a quantitative theory-experiment dialogue on how such genes give rise to physiological and evolutionary adaptation. One category of high-throughput experiments used to understand the sequence-phenotype relationship of the transcriptome is massively parallel reporter assays (MPRAs). However, to improve the versatility and scalability of MPRA pipelines, we need a "theory of the experiment" to help us better understand the impact of various biological and experimental parameters on the interpretation of experimental data. These parameters include binding site copy number, where a large number of specific binding sites may titrate away transcription factors, as well as the presence of overlapping binding sites, which may affect analysis of the degree of mutual dependence between mutations in the regulatory region and expression levels. To that end, in this paper we create tens of thousands of synthetic single-cell gene expression outputs using both equilibrium and out-of-equilibrium models. These models make it possible to imitate the summary statistics (information footprints and expression shift matrices) used to characterize the output of MPRAs and from this summary statistic to infer the underlying regulatory architecture. Specifically, we use a more refined implementation of the so-called thermodynamic models in which the binding energies of each sequence variant are derived from energy matrices. Our simulations reveal important effects of the parameters on MPRA data and we demonstrate our ability to optimize MPRA experimental designs with the goal of generating thermodynamic models of the transcriptome with base-pair specificity. Further, this approach makes it possible to carefully examine the mapping between mutations in binding sites and their corresponding expression profiles, a tool useful not only for better designing MPRAs, but also for exploring regulatory evolution.

3.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38352569

RESUMEN

For the vast majority of genes in sequenced genomes, there is limited understanding of how they are regulated. Without such knowledge, it is not possible to perform a quantitative theory-experiment dialogue on how such genes give rise to physiological and evolutionary adaptation. One category of high-throughput experiments used to understand the sequence-phenotype relationship of the transcriptome is massively parallel reporter assays (MPRAs). However, to improve the versatility and scalability of MPRA pipelines, we need a "theory of the experiment" to help us better understand the impact of various biological and experimental parameters on the interpretation of experimental data. These parameters include binding site copy number, where a large number of specific binding sites may titrate away transcription factors, as well as the presence of overlapping binding sites, which may affect analysis of the degree of mutual dependence between mutations in the regulatory region and expression levels. To that end, in this paper we create tens of thousands of synthetic single-cell gene expression outputs using both equilibrium and out-of-equilibrium models. These models make it possible to imitate the summary statistics (information footprints and expression shift matrices) used to characterize the output of MPRAs and from this summary statistic to infer the underlying regulatory architecture. Specifically, we use a more refined implementation of the so-called thermodynamic models in which the binding energies of each sequence variant are derived from energy matrices. Our simulations reveal important effects of the parameters on MPRA data and we demonstrate our ability to optimize MPRA experimental designs with the goal of generating thermodynamic models of the transcriptome with base-pair specificity. Further, this approach makes it possible to carefully examine the mapping between mutations in binding sites and their corresponding expression profiles, a tool useful not only for better designing MPRAs, but also for exploring regulatory evolution.

4.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824805

RESUMEN

Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered. Using recent advances in structure prediction and experimental structures, we show that roughly 40% of these regions form well-structured helices. Features often used to predict disorder-high charge density, low hydrophobicity, low sequence complexity, and evolutionarily varying length-are also compatible with solvated, variable-length helices. We show that a simple composition classifier predicts the existence of structure far better than well-established heuristics based on charge and hydropathy. We show that helical structure is more prevalent than previously appreciated in highly charged regions of diverse proteomes and characterize the conservation of highly charged regions. Our results underscore the importance of integrating, rather than choosing between, structure- and disorder-based approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA