Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Exp Eye Res ; 229: 109433, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858249

RESUMEN

Heparan-α-glucosaminide N-acetyltransferase (HGSNAT) participates in lysosomal degradation of heparan sulfate. Mutations in the gene encoding this enzyme cause mucopolysaccharidosis IIIC (MPS IIIC) or Sanfilippo syndrome type C. MPS IIIC patients exhibit progressive neurodegeneration, leading to dementia and death in early adulthood. Currently there is no approved treatment for MPS IIIC. Incidences of non-syndromic retinitis pigmentosa and early signs of night blindness are reported in some MPS IIIC patients, however the majority of ocular phenotypes are not well characterized. The goal of this study was to investigate retinal degeneration phenotype in the Hgsnat knockout mouse model of MPS IIIC and a cadaveric human MPS IIIC eye. Cone and rod photoreceptors in the eyes of homozygous 6-month-old Hgsnat knockout mice and their wild-type counterparts were analyzed using cone arrestin, S-opsin, M-opsin and rhodopsin antibodies. Histological observation was performed on the eye from a 35-year-old MPS IIIC donor. We observed a nearly 50% reduction in the rod photoreceptors density in the Hgsnat knockout mice compared to the littermate wild-type controls. Cone photoreceptor density was unaltered at this age. Severe retinal degeneration was also observed in the MPS IIIC donor eye. To our knowledge, this is the first report characterizing ocular phenotypes arising from deleterious variants in the Hgsnat gene associated with MPS IIIC clinical phenotype. Our findings indicate retinal manifestations may be present even before behavioral manifestations. Thus, we speculate that ophthalmological evaluations could be used as diagnostic indicators of early disease, progression, and end-point evaluation for future MPS IIIC therapies.


Asunto(s)
Mucopolisacaridosis III , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Ratones , Humanos , Adulto , Lactante , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/diagnóstico , Mucopolisacaridosis III/patología , Degeneración Retiniana/genética , Mutación , Ratones Noqueados , Acetiltransferasas/genética
2.
J Pharmacol Sci ; 151(2): 110-118, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36707176

RESUMEN

Caffeic acid has been indicated to benefit cholesterol balance, but the effect of pure caffeic acid on atherosclerosis in vivo has not been tested. Given that atherosclerosis and Alzheimer's disease share common features including distracted lipid balance and chronic inflammation, the concurrent effects of caffeic acid on atherosclerotic lesions and cognitive decline were explored here by using the ApoE-/- mice model. A two months' administration of 20 mg/kg caffeic acid or saline was given once two days intraperitoneally to 5-month-old female ApoE-/- mice. We found that the caffeic acid treatment reduced the atherosclerotic lesions in the whole aorta and aortic sinus of the resulting 7-month-old ApoE-/- mice by roughly 50%, compared with the saline control. Meanwhile, the cognitive decline of treated mice were significantly alleviated, as measured by Y-maze and Morris water maze tasks. A reduced accumulation of ß-amyloid in the hippocampus was also observed. These effects were associated with elevated serum HDL-c concentration, upregulated ABCA1 and ABCG1 mRNA levels, as well as decrease local inflammation and reduced levels of serum pro-inflammatory cytokines including TNF-α, IL-6 and MCP-1. These obtained results suggested the preventive and therapeutic potential of caffeic acid against atherosclerosis and Alzheimer's disease during aging.


Asunto(s)
Enfermedad de Alzheimer , Aterosclerosis , Disfunción Cognitiva , Placa Aterosclerótica , Femenino , Animales , Ratones , Enfermedad de Alzheimer/prevención & control , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/prevención & control , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Inflamación/patología , Apolipoproteínas E/genética , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Ratones Noqueados
3.
Biochem Biophys Res Commun ; 556: 65-71, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33839416

RESUMEN

Ethyl gallate (EG) is a well-known constituent of medicinal plants, but its effects on atherosclerosis development are not clear. In the present study, the anti-atherosclerosis effects of EG and the underlying mechanisms were explored using macrophage cultures, zebrafish and apolipoprotein (apo) E deficient mice. Treatment of macrophages with EG (20 µM) enhanced cellular cholesterol efflux to HDL, and reduced net lipid accumulation in response to oxidized LDL. Secretion of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) from activated macrophages was also blunted by EG. Fluorescence imaging techniques revealed EG feeding of zebrafish reduced vascular lipid accumulation and inflammatory responses in vivo. Similar results were obtained in apoE-/- mice 6.5 months of age, where plaque lesions and monocyte infiltration into the artery wall were reduced by 70% and 42%, respectively, after just 6 weeks of injections with EG (20 mg/kg). HDL-cholesterol increased 2-fold, serum cholesterol efflux capacity increased by ∼30%, and the levels of MCP-1 and IL-6 were reduced with EG treatment of mice. These results suggest EG impedes early atherosclerosis development by reducing the lipid and macrophage-content of plaque. Underlying mechanisms appeared to involve HDL cholesterol efflux mechanisms and suppression of pro-inflammatory cytokine secretion.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Benzoatos/metabolismo , Ácido Gálico/análogos & derivados , Metabolismo de los Lípidos/efectos de los fármacos , Plantas Medicinales/metabolismo , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/patología , Aterosclerosis/prevención & control , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células Espumosas/citología , Células Espumosas/efectos de los fármacos , Células Espumosas/inmunología , Células Espumosas/metabolismo , Ácido Gálico/administración & dosificación , Ácido Gálico/metabolismo , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/prevención & control , Células RAW 264.7 , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra/metabolismo
4.
FASEB J ; 31(8): 3467-3483, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28442549

RESUMEN

Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In neuraminidase 3 and 4 double-knockout mice, GM3 ganglioside is stored in microglia, vascular pericytes, and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies, and memory loss, whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro Double-knockout mice also have reduced levels of GM1 ganglioside and myelin in neuronal axons. Furthermore, neuraminidase 3 deficiency drastically increased storage of GM2 in the brain tissues of an asymptomatic mouse model of Tay-Sachs disease, a severe human gangliosidosis, indicating that this enzyme is responsible for the metabolic bypass of ß-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies.-Pan, X., De Britto Pará De Aragão, C., Velasco-Martin, J. P., Priestman, D. A., Wu, H. Y., Takahashi, K., Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F. M., Lamarche-Vane, N., Morales, C. R., Miyagi, T., Pshezhetsky, A. V. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides.


Asunto(s)
Encéfalo/metabolismo , Gangliósidos/metabolismo , Neuraminidasa/metabolismo , Neuronas/fisiología , Animales , Encéfalo/patología , Células Cultivadas , Embrión de Mamíferos , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Mucolipidosis/metabolismo , Neuraminidasa/genética
5.
PLoS Genet ; 10(2): e1004146, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586188

RESUMEN

The potent vasoconstrictor peptides, endothelin 1 (ET-1) and angiotensin II control adaptation of blood vessels to fluctuations of blood pressure. Previously we have shown that the circulating level of ET-1 is regulated through its proteolytic cleavage by secreted serine carboxypeptidase, cathepsin A (CathA). However, genetically-modified mouse expressing catalytically inactive CathA S190A mutant retained about 10-15% of the carboxypeptidase activity against ET-1 in its tissues suggesting a presence of parallel/redundant catabolic pathway(s). In the current work we provide direct evidence that the enzyme, which complements CathA action towards ET-1 is a retinoid-inducible lysosomal serine carboxypeptidase 1 (Scpep1), a CathA homolog with previously unknown biological function. We generated a mouse strain devoid of both CathA and Scpep1 activities (DD mice) and found that in response to high-salt diet and systemic injections of ET-1 these animals showed significantly increased blood pressure as compared to wild type mice or those with single deficiencies of CathA or Scpep1. We also found that the reactivity of mesenteric arteries from DD mice towards ET-1 was significantly higher than that for all other groups of mice. The DD mice had a reduced degradation rate of ET-1 in the blood whereas their cultured arterial vascular smooth muscle cells showed increased ET-1-dependent phosphorylation of myosin light chain 2. Together, our results define the biological role of mammalian serine carboxypeptidase Scpep1 and suggest that Scpep1 and CathA together participate in the control of ET-1 regulation of vascular tone and hemodynamics.


Asunto(s)
Carboxipeptidasas/metabolismo , Catepsina A/metabolismo , Endotelina-1/metabolismo , Hipertensión/genética , Angiotensina II/genética , Angiotensina II/metabolismo , Animales , Presión Sanguínea/genética , Carboxipeptidasas/genética , Catepsina A/genética , Células Cultivadas , Endotelina-1/genética , Hemodinámica/genética , Humanos , Hipertensión/patología , Ratones , Vasoconstricción/genética
6.
Cells ; 13(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786099

RESUMEN

Mucopolysaccharidosis III type C (MPS IIIC) is an untreatable neuropathic lysosomal storage disease caused by a genetic deficiency of the lysosomal N-acetyltransferase, HGSNAT, catalyzing a transmembrane acetylation of heparan sulfate. HGSNAT is a transmembrane enzyme incapable of free diffusion between the cells or their cross-correction, which limits development of therapies based on enzyme replacement and gene correction. Since our previous work identified neuroinflammation as a hallmark of the CNS pathology in MPS IIIC, we tested whether it can be corrected by replacement of activated brain microglia with neuroprotective macrophages/microglia derived from a heterologous HSPC transplant. Eight-week-old MPS IIIC (HgsnatP304L) mice were transplanted with HSPC from congenic wild type mice after myeloablation with Busulfan and studied using behavior test battery, starting from the age of 6 months. At the age of ~8 months, mice were sacrificed to study pathological changes in the brain, heparan sulfate storage, and other biomarkers of the disease. We found that the treatment corrected several behavior deficits including hyperactivity and reduction in socialization, but not memory decline. It also improved several features of CNS pathology such as microastroglyosis, expression of pro-inflammatory cytokine IL-1ß, and accumulation of misfolded amyloid aggregates in cortical neurons. At the periphery, the treatment delayed development of terminal urinary retention, potentially increasing longevity, and reduced blood levels of heparan sulfate. However, we did not observe correction of lysosomal storage phenotype in neurons and heparan sulfate brain levels. Together, our results demonstrate that neuroinflammation in a neurological lysosomal storage disease, caused by defects in a transmembrane enzyme, can be effectively ameliorated by replacement of microglia bearing the genetic defect with cells from a normal healthy donor. They also suggest that heterologous HSPC transplant, if used together with other methods, such as chaperone therapy or substrate reduction therapy, may constitute an effective combination therapy for MPS IIIC and other disorders with a similar etiology.


Asunto(s)
Modelos Animales de Enfermedad , Mucopolisacaridosis III , Enfermedades Neuroinflamatorias , Animales , Mucopolisacaridosis III/patología , Mucopolisacaridosis III/terapia , Mucopolisacaridosis III/genética , Ratones , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Lisosomas/metabolismo , Microglía/patología , Microglía/metabolismo , Ratones Endogámicos C57BL , Encéfalo/patología , Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Inflamación/patología
7.
Nat Struct Mol Biol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769387

RESUMEN

Lysosomal transmembrane acetylation of heparan sulfates (HS) is catalyzed by HS acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), whose dysfunction leads to lysosomal storage diseases. The mechanism by which HGSNAT, the sole non-hydrolase enzyme in HS degradation, brings cytosolic acetyl-coenzyme A (Ac-CoA) and lysosomal HS together for N-acyltransferase reactions remains unclear. Here, we present cryogenic-electron microscopy structures of HGSNAT alone, complexed with Ac-CoA and with acetylated products. These structures explain that Ac-CoA binding from the cytosolic side causes dimeric HGSNAT to form a transmembrane tunnel. Within this tunnel, catalytic histidine and asparagine approach the lumen and instigate the transfer of the acetyl group from Ac-CoA to the glucosamine group of HS. Our study unveils a transmembrane acetylation mechanism that may help advance therapeutic strategies targeting lysosomal storage diseases.

8.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712143

RESUMEN

Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), ß-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology.

9.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37698928

RESUMEN

Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy. We studied the pathophysiological mechanism of the disease in 2 NEU1-deficient mouse models, a constitutive Neu1-knockout, Neu1ΔEx3, and a conditional phagocyte-specific knockout, Neu1Cx3cr1ΔEx3. Mice of both strains exhibited terminal urinary retention and severe kidney damage with elevated urinary albumin levels, loss of nephrons, renal fibrosis, presence of storage vacuoles, and dysmorphic mitochondria in the intraglomerular and tubular cells. Glycoprotein sialylation in glomeruli, proximal distal tubules, and distal tubules was drastically increased, including that of an endocytic reabsorption receptor megalin. The pool of megalin bearing O-linked glycans with terminal galactose residues, essential for protein targeting and activity, was reduced to below detection levels. Megalin levels were severely reduced, and the protein was directed to lysosomes instead of the apical membrane. Together, our results demonstrated that desialylation by NEU1 plays a crucial role in processing and cellular trafficking of megalin and that NEU1 deficiency in sialidosis impairs megalin-mediated protein reabsorption.


Asunto(s)
Enfermedades Renales , Mucolipidosis , Animales , Humanos , Ratones , Enfermedades Renales/metabolismo , Glomérulos Renales/metabolismo , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Mucolipidosis/genética , Mucolipidosis/patología , Neuraminidasa/genética
10.
Sci Adv ; 9(26): eade6308, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390204

RESUMEN

Deleterious variants in N-acetylneuraminate pyruvate lyase (NPL) cause skeletal myopathy and cardiac edema in humans and zebrafish, but its physiological role remains unknown. We report generation of mouse models of the disease: NplR63C, carrying the human p.Arg63Cys variant, and Npldel116 with a 116-bp exonic deletion. In both strains, NPL deficiency causes drastic increase in free sialic acid levels, reduction of skeletal muscle force and endurance, slower healing and smaller size of newly formed myofibers after cardiotoxin-induced muscle injury, increased glycolysis, partially impaired mitochondrial function, and aberrant sialylation of dystroglycan and mitochondrial LRP130 protein. NPL-catalyzed degradation of sialic acid in the muscle increases after fasting and injury and in human patient and mouse models with genetic muscle dystrophy, demonstrating that NPL is essential for muscle function and regeneration and serves as a general marker of muscle damage. Oral administration of N-acetylmannosamine rescues skeletal myopathy, as well as mitochondrial and structural abnormalities in NplR63C mice, suggesting a potential treatment for human patients.


Asunto(s)
Ácido N-Acetilneuramínico , Pez Cebra , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Glicoproteínas , Músculo Esquelético , Piruvatos , Regeneración
11.
J Exp Med ; 219(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35704026

RESUMEN

The majority of mucopolysaccharidosis IIIC (MPS IIIC) patients have missense variants causing misfolding of heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), which are potentially treatable with pharmacological chaperones. To test this approach, we generated a novel HgsnatP304L mouse model expressing misfolded HGSNAT Pro304Leu variant. HgsnatP304L mice present deficits in short-term and working/spatial memory 2-4 mo earlier than previously described constitutive knockout Hgsnat-Geo mice. HgsnatP304L mice also show augmented severity of neuroimmune response, synaptic deficits, and neuronal storage of misfolded proteins and gangliosides compared with Hgsnat-Geo mice. Expression of misfolded human Pro311Leu HGSNAT protein in cultured hippocampal Hgsnat-Geo neurons further reduced levels of synaptic proteins. Memory deficits and majority of brain pathology were rescued in mice receiving HGSNAT chaperone, glucosamine. Our data for the first time demonstrate dominant-negative effects of misfolded HGSNAT Pro304Leu variant and show that they are treatable by oral administration of glucosamine. This suggests that patients affected with mutations preventing normal folding of the enzyme can benefit from chaperone therapy.


Asunto(s)
Mucopolisacaridosis , Mucopolisacaridosis III , Acetiltransferasas , Animales , Glucosamina , Heparitina Sulfato , Humanos , Ratones , Ratones Noqueados , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/patología
12.
Mol Med ; 17(9-10): 1056-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21687917

RESUMEN

Atherogenesis is a long-term process that involves inflammatory response coupled with metabolic dysfunction. Foam cell formation and macrophage inflammatory response are two key events in atherogenesis. Adipocyte enhancer-binding protein 1 (AEBP1) has been shown to impede macrophage cholesterol efflux, promoting foam cell formation, via peroxisome proliferator-activated receptor (PPAR)-γ1 and liver X receptor α (LXRα) downregulation. Moreover, AEBP1 has been shown to promote macrophage inflammatory responsiveness by inducing nuclear factor (NF)-κB activity via IκBα downregulation. Lipopolysaccharide (LPS)-induced suppression of pivotal macrophage cholesterol efflux mediators, leading to foam cell formation, has been shown to be mediated by AEBP1. Herein, we showed that AEBP1-transgenic mice (AEBP1(TG)) with macrophage-specific AEBP1 overexpression exhibit hyperlipidemia and develop atherosclerotic lesions in their proximal aortas. Consistently, ablation of AEBP1 results in significant attenuation of atherosclerosis (males: 3.2-fold, P = 0.001 [en face]), 2.7-fold, P = 0.0004 [aortic roots]; females: 2.1-fold, P = 0.0026 [en face], 1.7-fold, P = 0.0126 [aortic roots]) in the AEBP1(-/-)/low-density lipoprotein receptor (LDLR )(-/-) double-knockout (KO) mice. Bone marrow (BM) transplantation experiments further revealed that LDLR (-/-) mice reconstituted with AEBP1(-/-)/LDLR (-/-) BM cells (LDLR (-/-)/KO-BM chimera) display significant reduction of atherosclerosis lesions (en face: 2.0-fold, P = 0.0268; aortic roots: 1.7-fold, P = 0.05) compared with control mice reconstituted with AEBP1(+/+)/LDLR (-/-) BM cells (LDLR (-/-)/WT-BM chimera). Furthermore, transplantation of AEBP1(TG) BM cells with the normal apolipoprotein E (ApoE) gene into ApoE (-/-) mice (ApoE (-/-)/TG-BM chimera) leads to significant development of atherosclerosis (males: 2.5-fold, P = 0.0001 [en face], 4.7-fold, P = 0.0001 [aortic roots]; females: 1.8-fold, P = 0.0001 [en face], 3.0-fold, P = 0.0001 [aortic roots]) despite the restoration of ApoE expression. Macrophages from ApoE (-/-)/TG-BM chimeric mice express reduced levels of PPARγ1, LXRα, ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) and increased levels of the inflammatory mediators interleukin (IL)-6 and tumor necrosis factor (TNF)-α compared with macrophages of control chimeric mice (ApoE (-/-)/NT-BM ) that received AEBP1 nontransgenic (AEBP1(NT) ) BM cells. Our in vivo experimental data strongly suggest that macrophage AEBP1 plays critical regulatory roles in atherogenesis, and it may serve as a potential therapeutic target for the prevention or treatment of atherosclerosis.


Asunto(s)
Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Carboxipeptidasas/metabolismo , Receptores de LDL/metabolismo , Proteínas Represoras/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/etiología , Aterosclerosis/genética , Carboxipeptidasas/genética , Colesterol/metabolismo , Dieta Aterogénica/efectos adversos , Grasas de la Dieta/efectos adversos , Femenino , Hiperlipidemias/etiología , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Inmunohistoquímica , Receptores X del Hígado , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores Nucleares Huérfanos/metabolismo , PPAR gamma/metabolismo , Receptores de LDL/genética , Proteínas Represoras/genética , Factores Sexuales
13.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156977

RESUMEN

The majority of patients affected with lysosomal storage disorders (LSD) exhibit neurological symptoms. For mucopolysaccharidosis type IIIC (MPSIIIC), the major burdens are progressive and severe neuropsychiatric problems and dementia, primarily thought to stem from neurodegeneration. Using the MPSIIIC mouse model, we studied whether clinical manifestations preceding massive neurodegeneration arise from synaptic dysfunction. Reduced levels or abnormal distribution of multiple synaptic proteins were revealed in cultured hippocampal and CA1 pyramidal MPSIIIC neurons. These defects were rescued by virus-mediated gene correction. Dendritic spines were reduced in pyramidal neurons of mouse models of MPSIIIC and other (Tay-Sachs, sialidosis) LSD as early as at P10. MPSIIIC neurons also presented alterations in frequency and amplitude of miniature excitatory and inhibitory postsynaptic currents, sparse synaptic vesicles, reduced postsynaptic densities, disorganized microtubule networks, and partially impaired axonal transport of synaptic proteins. Furthermore, postsynaptic densities were reduced in postmortem cortices of human MPS patients, suggesting that the pathology is a common hallmark for neurological LSD. Together, our results demonstrate that lysosomal storage defects cause early alterations in synaptic structure and abnormalities in neurotransmission originating from impaired synaptic vesicular transport, and they suggest that synaptic defects could be targeted to treat behavioral and cognitive defects in neurological LSD patients.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/metabolismo , Mucopolisacaridosis III , Células Piramidales , Vesículas Secretoras/metabolismo , Transmisión Sináptica/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Células Cultivadas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Progresión de la Enfermedad , Descubrimiento de Drogas , Hipocampo/patología , Ratones , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/psicología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Transporte de Proteínas , Células Piramidales/metabolismo , Células Piramidales/patología
14.
J Am Heart Assoc ; 10(4): e018756, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33554615

RESUMEN

Background Chronic vascular disease atherosclerosis starts with an uptake of atherogenic modified low-density lipoproteins (LDLs) by resident macrophages, resulting in formation of arterial fatty streaks and eventually atheromatous plaques. Increased plasma sialic acid levels, increased neuraminidase activity, and reduced sialic acid LDL content have been previously associated with atherosclerosis and coronary artery disease in human patients, but the mechanism underlying this association has not been explored. Methods and Results We tested the hypothesis that neuraminidases contribute to development of atherosclerosis by removing sialic acid residues from glycan chains of the LDL glycoprotein and glycolipids. Atherosclerosis progression was investigated in apolipoprotein E and LDL receptor knockout mice with genetic deficiency of neuraminidases 1, 3, and 4 or those treated with specific neuraminidase inhibitors. We show that desialylation of the LDL glycoprotein, apolipoprotein B 100, by human neuraminidases 1 and 3 increases the uptake of human LDL by human cultured macrophages and by macrophages in aortic root lesions in Apoe-/- mice via asialoglycoprotein receptor 1. Genetic inactivation or pharmacological inhibition of neuraminidases 1 and 3 significantly delays formation of fatty streaks in the aortic root without affecting the plasma cholesterol and LDL levels in Apoe-/- and Ldlr-/- mouse models of atherosclerosis. Conclusions Together, our results suggest that neuraminidases 1 and 3 trigger the initial phase of atherosclerosis and formation of aortic fatty streaks by desialylating LDL and increasing their uptake by resident macrophages.


Asunto(s)
Aorta Abdominal/patología , Aterosclerosis/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Neuraminidasa/metabolismo , Animales , Aorta Abdominal/metabolismo , Aterosclerosis/patología , Biomarcadores/metabolismo , Células Cultivadas , Enfermedad de la Arteria Coronaria/patología , Modelos Animales de Enfermedad , Humanos , Macrófagos/patología , Ratones , Ratones Noqueados , Fagocitosis
15.
Mol Metab ; 12: 76-88, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29735266

RESUMEN

OBJECTIVES: Neuraminidase 1 (NEU1) cleaves terminal sialic acids of glycoconjugates during lysosomal catabolism. It also modulates the structure and activity of cellular surface receptors affecting diverse pathways. Previously we demonstrated that NEU1 activates the insulin receptor (IR) and that NEU1-deficient CathAS190A-Neo mice (hypomorph of the NEU1 activator protein, cathepsin A/CathA) on a high-fat diet (HFD) develop hyperglycaemia and insulin resistance faster than wild-type animals. The major objective of the current work was to reveal the molecular mechanism by which NEU1 desialylation activates the IR and to test if increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance. METHODS: To test if desialylation causes a conformational change in the IR dimer we measured interaction between the receptor subunits by Bioluminescence Resonance Energy Transfer in the HEK293T cells either overexpressing NEU1 or treated with the NEU1 inhibitor. The influence of NEU1 overexpression on insulin resistance was studied in vitro in palmitate-treated HepG2 cells transduced with NEU1-expressing lentivirus and in vivo in C57Bl6 mice treated with HFD and either pharmacological inducer of NEU1, Ambroxol or NEU1-expressing adenovirus. NEU1-deficient CathAS190A-Neo mice were used as a control. RESULTS: By desialylation of IR, NEU1 induced formation of its active dimer leading to insulin signaling. Overexpression of NEU1 in palmitate-treated HepG2 cells restored insulin signaling, suggesting that increased NEU1 levels may reverse insulin resistance. Five-day treatment of glycemic C57Bl6 mice receiving HFD with the activator of the lysosomal gene network, Ambroxol, increased NEU1 expression and activity in muscle tissue, normalized fasting glucose levels, and improved physiological and molecular responses to glucose and insulin. Ambroxol did not improve insulin sensitivity in obese insulin-resistant CathAS190A-Neo mice indicating that the Ambroxol effect is mediated through NEU1 induction. Sustained increase of liver NEU1 activity through adenovirus-based gene transfer failed to attenuate insulin resistance most probably due to negative feedback regulation of IR expression. CONCLUSION: Together our results demonstrate that increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance suggesting that a pharmacological modulation of NEU1 activity may be potentially explored for restoring insulin sensitivity and resolving hyperglycemia associated with T2DM.


Asunto(s)
Resistencia a la Insulina , Neuraminidasa/metabolismo , Obesidad/metabolismo , Receptor de Insulina/metabolismo , Ambroxol/farmacología , Ambroxol/uso terapéutico , Animales , Células HEK293 , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Neuraminidasa/genética , Obesidad/tratamiento farmacológico
16.
JCI Insight ; 3(24)2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30568043

RESUMEN

Sialic acids are important components of glycoproteins and glycolipids essential for cellular communication, infection, and metastasis. The importance of sialic acid biosynthesis in human physiology is well illustrated by the severe metabolic disorders in this pathway. However, the biological role of sialic acid catabolism in humans remains unclear. Here, we present evidence that sialic acid catabolism is important for heart and skeletal muscle function and development in humans and zebrafish. In two siblings, presenting with sialuria, exercise intolerance/muscle wasting, and cardiac symptoms in the brother, compound heterozygous mutations [chr1:182775324C>T (c.187C>T; p.Arg63Cys) and chr1:182772897A>G (c.133A>G; p.Asn45Asp)] were found in the N-acetylneuraminate pyruvate lyase gene (NPL). In vitro, NPL activity and sialic acid catabolism were affected, with a cell-type-specific reduction of N-acetyl mannosamine (ManNAc). A knockdown of NPL in zebrafish resulted in severe skeletal myopathy and cardiac edema, mimicking the human phenotype. The phenotype was rescued by expression of wild-type human NPL but not by the p.Arg63Cys or p.Asn45Asp mutants. Importantly, the myopathy phenotype in zebrafish embryos was rescued by treatment with the catabolic products of NPL: N-acetyl glucosamine (GlcNAc) and ManNAc; the latter also rescuing the cardiac phenotype. In conclusion, we provide the first report to our knowledge of a human defect in sialic acid catabolism, which implicates an important role of the sialic acid catabolic pathway in mammalian muscle physiology, and suggests opportunities for monosaccharide replacement therapy in human patients.


Asunto(s)
Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismo , Adulto , Animales , Modelos Animales de Enfermedad , Edema Cardíaco/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Células HEK293 , Hexosaminas/metabolismo , Humanos , Masculino , Músculo Esquelético/crecimiento & desarrollo , Enfermedades Musculares/fisiopatología , Mutación , Oxo-Ácido-Liasas/uso terapéutico , Enfermedad por Almacenamiento de Ácido Siálico/metabolismo , Adulto Joven , Pez Cebra/embriología
17.
PLoS One ; 12(2): e0172854, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28234994

RESUMEN

Vasoactive and mitogenic peptide, endothelin-1 (ET-1) plays an important role in physiology of the ocular tissues by regulating the growth of corneal epithelial cells and maintaining the hemodynamics of intraocular fluids. We have previously established that ET-1 can be degraded in vivo by two lysosomal/secreted serine carboxypeptidases, Cathepsin A (CathA) and Serine Carboxypeptidase 1 (Scpep1) and that gene-targeted CathAS190A /Scpep1-/- mice, deficient in CathA and Scpep1 have a prolonged half-life of circulating ET-1 associated with systemic hypertension. In the current work we report that starting from 6 months of age, ~43% of CathAS190A /Scpep1-/- mice developed corneal clouding that eventually caused vision impairment. Histological evaluation of these mice demonstrated a selective fibrotic thickening and vacuolization of the corneas, resembling human hyperproliferative vesicular corneal stromal dystrophy and coexisting with a peculiar thickening of the skin epidermis. Moreover, we found that cultured corneal epithelial cells, skin fibroblasts and vascular smooth muscle cells derived from CathA/Scpep1-deficient mice, demonstrated a significantly higher proliferative response to treatment with exogenous ET-1, as compared with cells from wild type mice. We also detected increased activation level of ERK1/2 and AKT kinases involved in cell proliferation in the ET-1-treated cultured cells from CathA/Scpep1 deficient mice. Together, results from our experimental model suggest that; in normal tissues the tandem of serine carboxypeptidases, Scpep1 and CathA likely constitutes an important part of the physiological mechanism responsible for the balanced elimination of heightened levels of ET-1 that otherwise would accumulate in tissues and consequently contribute to development of the hyper-proliferative corneal dystrophy and abnormal skin thickening.


Asunto(s)
Carboxipeptidasas/genética , Catepsina A/genética , Distrofias Hereditarias de la Córnea/genética , Lisosomas/enzimología , Piel/patología , Animales , Humor Acuoso/metabolismo , Carboxipeptidasas/metabolismo , Catepsina A/metabolismo , Proliferación Celular , Distrofias Hereditarias de la Córnea/metabolismo , Endotelina-1/farmacología , Epidermis/patología , Femenino , Fibroblastos/citología , Fibrosis , Hemodinámica , Masculino , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/citología , Miofibroblastos/citología , Fosforilación
18.
Mol Cells ; 20(2): 183-8, 2005 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-16267391

RESUMEN

INI1/hSNF5/BAF47 is a core component of the hSWI/ SNF ATP-dependent chromatin remodeling complex, and it has been implicated in regulating gene expression, cell division and tumorigenesis. We investigated whether INI1/hSNF5/BAF47 functions in activation of the colony stimulating factor 1 (CSF1) promoter in HeLa cells. Overexpression of INI1/hSNF5/BAF47 promoted CSF1 transcription, and siRNA targeting INI1/hSNF5/ BAF47 (siINI1) strongly inhibited the activity of the CSF1 promoter. We demonstrated that all conserved domains of INI1/hSNF5/BAF47 are needed for CSF1 transcription. ChIP experiment showed that INI1/ hSNF5/BAF47 is recruited to the region of the CSF1 promoter. Taken together, these results indicate that INI1/hSNF5/BAF47 is involved in activation of the CSF1 promoter.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/fisiología , Factor Estimulante de Colonias de Macrófagos/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/fisiología , Técnicas de Cultivo de Célula , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Factor Estimulante de Colonias de Macrófagos/biosíntesis , Plásmidos/genética , Regiones Promotoras Genéticas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteínas Represoras/genética , Proteína SMARCB1 , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética/fisiología
19.
PLoS One ; 10(11): e0143218, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26569607

RESUMEN

The central molecular event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC), which is a sialoglycoprotein, into the disease-associated, transmissible form denoted PrPSc. Recent studies revealed a correlation between the sialylation status of PrPSc and incubation time to disease and introduced a new hypothesis that progression of prion diseases could be controlled or reversed by altering the sialylation level of PrPC. Of the four known mammalian sialidases, the enzymes that cleave off sialic acid residues, only NEU1, NEU3 and NEU4 are expressed in the brain. To test whether cellular sialidases control the steady-state sialylation level of PrPC and to identify the putative sialidase responsible for desialylating PrPC, we analyzed brain-derived PrPC from knockout mice deficient in Neu1, Neu3, Neu4, or from Neu3/Neu4 double knockouts. Surprisingly, no differences in the sialylation of PrPC or its proteolytic product C1 were noticed in any of the knockout mice tested as compared to the age-matched controls. However, significantly higher amounts of the C1 fragment relative to full-length PrPC were detected in the brains of Neu1 knockout mice as compared to WT mice or to the other knockout mice. Additional experiments revealed that in neuroblastoma cell line the sialylation pattern of C1 could be changed by an inhibitor of sialylatransferases. In summary, this study suggests that targeting cellular sialidases is apparently not the correct strategy for altering the sialylation levels of PrPC, whereas modulating the activity of sialylatransferases might offer a more promising approach. Our findings also suggest that catabolism of PrPC involves its α-cleavage followed by desialylation of the resulting C1 fragments by NEU1 and consequent fast degradation of the desialylated products.


Asunto(s)
Neuraminidasa/metabolismo , Fragmentos de Péptidos/metabolismo , Priones/metabolismo , Animales , Western Blotting , Encéfalo/metabolismo , Electroforesis en Gel Bidimensional , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/deficiencia , Neuraminidasa/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
PLoS One ; 9(9): e106320, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25222608

RESUMEN

The removal of sialic acid (Sia) residues from glycoconjugates in vertebrates is mediated by a family of neuraminidases (sialidases) consisting of Neu1, Neu2, Neu3 and Neu4 enzymes. The enzymes play distinct physiological roles, but their ability to discriminate between the types of linkages connecting Sia and adjacent residues and between the identity and arrangement of the underlying sugars has never been systematically studied. Here we analyzed the specificity of neuraminidases by studying the kinetics of hydrolysis of BODIPY-labeled substrates containing common mammalian sialylated oligosaccharides: 3'Sia-LacNAc, 3'SiaLac, SiaLex, SiaLea, SiaLec, 6'SiaLac, and 6'SiaLacNAc. We found significant differences in substrate specificity of the enzymes towards the substrates containing α2,6-linked Sia, which were readily cleaved by Neu3 and Neu1 but not by Neu4 and Neu2. The presence of a branching 2-Fuc inhibited Neu2 and Neu4, but had almost no effect on Neu1 or Neu3. The nature of the sugar residue at the reducing end, either glucose (Glc) or N-acetyl-D-glucosamine (GlcNAc) had only a minor effect on all neuraminidases, whereas core structure (1,3 or 1,4 bond between D-galactose (Gal) and GlcNAc) was found to be important for Neu4 strongly preferring ß3 (core 1) to ß4 (core 2) isomer. Neu3 and Neu4 were in general more active than Neu1 and Neu2, likely due to their preference for hydrophobic substrates. Neu2 and Neu3 were examined by molecular dynamics to identify favorable substrate orientations in the binding sites and interpret the differences in their specificities. Finally, using knockout mouse models, we confirmed that the substrate specificities observed in vitro were recapitulated in enzymes found in mouse brain tissues. Our data for the first time provide evidence for the characteristic substrate preferences of neuraminidases and their ability to discriminate between distinct sialoside targets.


Asunto(s)
Neuraminidasa/química , Animales , Sitios de Unión , Encéfalo/enzimología , Hidrólisis , Cinética , Ratones Noqueados , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA