Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 317-324, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38154037

RESUMEN

Arc-induced electrospray ionization mass spectrometry (AESI-MS) was developed during which alternating current electrospray is simply achieved through the arc plasma. The AESI source exploits the arc's temperature and charge properties to generate aerosols consisting of charged microdroplets. The electrospray region, in which organic molecules are contained within microdroplets, partially overlaps with the arc plasma region. Guided by the electric field, these molecules undergo ionization, yielding ionic target analytes. AESI represents a soft ionization method that combines the mechanisms of atmospheric pressure chemical ionization and electrospray ionization, facilitating the ionization of analytes with wide ranging polarities. The precisely targeted spraying area enhances ion entry into the mass analyzer, thereby enabling excellent ionization efficiency. The AESI source exhibits several notable advantages over the electrospray ionization source, including an elevated but comparable level of active species concentrations and types, simplified mass spectra for direct amino acid analysis, high salt tolerance, versatile analysis of compounds with varying polarities, and reliable quantitative analysis of amino acids in complex matrices. Overall, AESI broadens the methodologies employed to generate microdroplets, providing a technological and scientific framework for creating distinctive electrospray ionization techniques.

2.
Anal Chem ; 96(16): 6106-6111, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38594830

RESUMEN

This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.


Asunto(s)
Nanotecnología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Citocromos c/química , Citocromos c/análisis , Bradiquinina/química , Bradiquinina/análisis , Angiotensina II/química , Angiotensina II/análisis , Fosfatidilcolinas/química , Fosfatidilcolinas/análisis , Glycine max/química
3.
Anal Chem ; 96(22): 8886-8892, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771107

RESUMEN

Illegal addition of drugs is common but seriously threatens public health safety. Conventional mass spectrometry methods are difficult to realize direct analysis of drugs existing in some complex matrices such as seawater or soil due to the ion suppression effect and contamination to MS parts caused by nonvolatile salts. In this work, a novel crystallization and solvent evaporation ionization mass spectrometry (CSEI-MS) method was constructed and developed to achieve rapid desalting detection. CSEI only consists of a heated plate and a nebulizer and exhibits excellent desalting performance, enabling direct analysis of six drugs dissolved in eight kinds of salt solutions (up to 200 mmol/L) and three complex salty matrices. Under optimized conditions, CSEI-MS presents high sensitivity, accuracy, linearity, and intraday and interday precision. Finally, this method is applied to the quantitative analysis of drugs in seawater, hand cream, and soil. Furthermore, the highly sensitive detection of CSEI-MS is demonstrated to remain even if the detection processes are conducted within 5 s via common commercial tools.


Asunto(s)
Cristalización , Solventes , Solventes/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Agua de Mar/química , Agua de Mar/análisis , Espectrometría de Masas/métodos , Volatilización , Suelo/química
4.
Anal Chem ; 96(14): 5664-5668, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38530953

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have caused widespread environmental concern in recent years. Among them, the levels of perfluoroalkane sulfonyl fluorides (PFASFs) in the environment have rarely been reported due to the lack of sensitive analytical methods. Herein, a novel liquid chromatography-microwave plasma torch ionization-mass spectrometry (LC-MPTI-MS) technique was designed for the direct analysis of PFASFs in the environment. The collaborative action of reactive oxygen species (such as hydroxyl radicals) and the elevated temperature within the ambient MPTI environment results in the replacement of the fluorine atom in sulfonyl fluoride by oxygen, leading to the detection of perfluoroalkanesulfonic acid (PFSA) ions by MS. Concurrently, LC was employed to separate other PFSAs that are present in the environment. Three PFASFs exhibited good linearity within the range of 1-500 µg/L with R2 > 0.994. The limit of detections (LODs) and the limit of quantifications (LOQs) were measured at 39.32-87.87 and 131.07-292.90 ng/L, respectively. The method was utilized for the direct detection of spiked perfluorooctane sulfonyl fluoride (PFOSF) in wastewater with recoveries of 77.16 to 124.81%. Our approach circumvents the laborious process of chemical derivatization and is anticipated to serve as a robust tool for determining the levels and behaviors of PFASFs in the environment.

5.
Anal Chem ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913599

RESUMEN

The methylation modifications of adenosine, especially N6-methyladenosine (m6A) and N6, 2'-odimethyladenosine (m6Am), play vital roles in various biological, physiological, and pathological processes. However, current methods for detecting these modifications at single-base resolution have limitations. Mass spectrometry (MS), a highly accurate and sensitive technique, can be utilized to differentiate between m6A and m6Am by analyzing the molecular weight differences in their fragments during tandem MS analysis. In this study, we present an MS-based method that allows for the simultaneous determination of m6A and m6Am sites in targeted RNA fragments at single-nucleotide resolution. The approach involves the utilization of tandem MS in conjunction with targeted RNA enrichment and enzymatic digestion, eliminating the need for PCR amplification. By employing this strategy, we can accurately identify m6A and m6Am sites in targeted RNA fragments with high confidence. To evaluate the effectiveness of our method, we applied it to detect m6A and m6Am sites in cell and tissue samples. Furthermore, we verified the accuracy of our approach by performing CRISPR/Cas9-mediated knockout of the corresponding methyltransferases. Overall, our MS-based method offers a reliable and precise means for the simultaneous detection of m6A and m6Am modifications in targeted RNA fragments, providing valuable insights into the functional characterization of these modifications in various biological contexts.

6.
Chemistry ; : e202401809, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802327

RESUMEN

The abiotic synthesis of peptides, widely regarded as one of the key chemical reactions on the prebiotic Earth, is thermodynamically constrained in solution. Herein, a simulation of the lightning phenomenon on the sea surface using bubble bursting and arc plasma under ambient conditions enables dipeptide formation of six amino acids with conversion ratios ranging from 2.6 % to 25.5 %. Additionally, we observed the formation of biologically active tripeptides and investigated the stereoselectivity of the dipeptide formation reaction. By utilizing a mixture of 20 amino acids in the reaction, 102 possible dipeptides were generated. These results establish experimental constructions to mimic achievable prebiotic conditions and provide a credible pathway for endogenous biopolymer synthesis on prebiotic Earth.

7.
J Proteome Res ; 22(3): 885-895, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36725203

RESUMEN

Being part of the human diet, peach is an important fruit consumed worldwide. In the present study, a systematic first insight into the N-glycosylation of peach fruit during ripening was provided. First, N-glycome by reactive matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry indicated that 6 of 24 N-glycans of peach were differentially expressed. Second, a comparative N-glycoproteome was characterized via 18O-tagged N-glycosylation site labeling followed by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS/MS). Totally 1464 N-glycosites on 881 N-glycoproteins were identified, among which 291 N-glycosites on 237 N-glycoproteins were expressed differentially with a fold change value of 1.5 or 0.67. The enrichment analysis of GO and KEGG revealed that four pathways including other glycan degradation, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, and protein processing in endoplasmic reticulum were mainly enriched, in which several important N-glycoproteins with dynamic change during fruit ripening were further screened out. Our findings on a large scale for N-glycosylation analysis of peach fruit during ripening may provide new molecular insights for comprehending N-glycoprotein functions, which should be of great interest to both glycobiologists and analytical chemists.


Asunto(s)
Prunus persica , Humanos , Prunus persica/genética , Prunus persica/metabolismo , Espectrometría de Masas en Tándem , Frutas/genética , Frutas/metabolismo , Glicómica , Glicosilación , Glicoproteínas/genética , Glicoproteínas/metabolismo
8.
Anal Chem ; 95(36): 13683-13689, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37624983

RESUMEN

Ultratrace organic pollutants in the environment pose severe threats to human health; hence, their accurate detection is essential. In this study, we develop a secondary solvent-free enrichment strategy based on bubbling extraction (BE). Especially, we used BE solid-phase microextraction and BE carbon nanotube paper absorption to capture aerosols from a liquid water surface, desorb analytes, and analyze the analytes using mass spectrometry. The application of a solvent-free enrichment strategy helps overcome technical challenges in implementing BE technology, including reproducibility, quantification, and sensitivity. This approach objectively demonstrates the enrichment efficiency of BE, resulting in improved mass spectrometry response and quantification. It effectively tackles the difficulties in detecting and quantifying ultratrace environmental pollutants in mass spectrometric analysis. The present study successfully conducted a quantitative analysis of 16 polycyclic aromatic hydrocarbons and 7 antibiotics in 48 environmental water samples. This strategy proved effective in detecting the presence and distribution of polar and nonpolar environmental pollutants in rivers and lakes. Moreover, this strategy has several advantages, such as ultrahigh sensitivity at the femtograms per liter level, good greenness, multiplexed quantitation, low sample consumption, and ease of operation. Overall, the utilization of the ultrasensitive and environmentally friendly BE approach presents a reliable and adaptable method for the identification of ultratrace environmental pollutants in water specimens, thereby enabling early monitoring of pollutant levels.

9.
Anal Chem ; 95(45): 16505-16513, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37902600

RESUMEN

De novo sequencing of oligonucleotides remains challenging, especially for oligonucleotides with post-transcriptional or synthetic modifications. Mass spectrometry (MS) sequencing can reliably detect and locate all of the modification sites in oligonucleotides via m/z variance. However, current MS-based sequencing methods exhibit complex spectra and low ion abundance and usually require coupled instrumentation. Herein, we demonstrate a method of oligonucleotide sequencing using TiO2/ZnAl-layered double oxide (LDO)-assisted laser desorption/ionization (LDI)-MS based on radical-induced dissociation (RID). ·CH2OH radicals can be produced on the surface of a TiO2/ZnAl-LDO matrix via ultraviolet light, inducing an attack on the active site of the oligonucleotide phosphate skeleton to create typical "a-, a-B-, c·-, d-, w-, and y"-type fragments. Compared with the spectra obtained via collision-based methods, such as collision-induced dissociation and higher-energy collisional dissociation, the LDI-MS spectra based on RID exhibit single-charged signals, fewer types of fragments, and a lower proportion of unknown noise peaks. We demonstrate full sequence coverage for a 6-mer 2'-O-methyl-modified oligonucleotide and a 21-mer small interfering RNA and show that RID can sequence oligonucleotides with modifications. Importantly, the mechanism responsible for the RID of the oligonucleotide phosphate skeleton was investigated through offline experiments, demonstrating consistent results with density functional theory calculations.


Asunto(s)
Oligonucleótidos , Óxidos , Oligonucleótidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fosfatos
10.
J Org Chem ; 88(4): 2550-2556, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35043626

RESUMEN

A simple, green halide-catalyzed protocol for disulfuration of indole derivatives with N-dithiophthalimides has been developed. This C-H disulfide reaction proceeded smoothly at room temperature with economical LiBr as catalyst, providing an effective method for the synthesis of novel unsymmetrical disulfides. A series of 3-dithioindole derivatives were obtained in high yields with good functional group tolerance; moreover, the wide scope of Harpp reagents (aryl, benzyl, primary, secondary, tertiary) confirmed the practicability of this approach.

11.
Environ Sci Technol ; 57(10): 4180-4186, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36848521

RESUMEN

Perfluorooctane sulfonyl fluoride (PFOSF) and perfluorohexane sulfonyl fluoride (PFHxSF) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and 2022, respectively. To date, their concentrations in environmental samples have not been reported due to the lack of sensitive methods. Herein, a novel chemical derivatization was developed for quantitative analysis of trace PFOSF and PFHxSF in soil by derivatizing them to the corresponding perfluoroalkane sulfinic acids. The method showed good linearity in the range from 25 to 500 ng L-1 with correlation coefficients (R2) better than 0.99. The detection limit of PFOSF in soil was 0.066 ng g-1 with recoveries in the range of 96-111%. Meanwhile, the detection limit of PFHxSF was 0.072 ng g-1 with recoveries in the range of 72-89%. Simultaneously, perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) were also detected accurately without being affected by the derivative reaction. By applying this method in an abandoned fluorochemical manufacturing facility, PFOSF and PFHxSF were successfully detected at concentrations ranging from 2.7 to 357 ng g-1 and 0.23 to 26 ng g-1 dry weight, respectively. It is very interesting that 2 years after factory relocation, there still exists high concentrations of PFOSF and PFHxSF, which is of concern.


Asunto(s)
Fluorocarburos , Ácidos Sulfínicos , Espectrometría de Masas en Tándem/métodos , Suelo , Cromatografía Liquida , Fluorocarburos/análisis
12.
J Sep Sci ; 46(23): e2300415, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37802974

RESUMEN

Sucrose esters (SEs) are crucial tobacco smoke flavor precursors and play a significant role in tobacco's functionality. Due to their structural complexity, the separation and analysis of SEs in tobacco remain a major challenge, and massive structures of SEs have not yet been fully identified. In this study, the fractions enriched in SEs were obtained from oriental and flue-cured tobacco through a series of pretreatments, and two types of SEs (Types I and II) were distinguished by liquid chromatography-tandem mass spectrometry (LC-MSn ) analysis, with Type II SEs newly characterized in tobacco. Five groups of main SEs were further purified using preparative high-performance LC (HPLC) coupled to an evaporative light scattering detector, and their structures were characterized by nuclear magnetic resonance spectrometry techniques including 1 H, 13 C, correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond correlation. By combining LC-MSn and nuclear magnetic resonance spectrometry, the structures of eight SE isomers were finally proposed, of which four were newly identified. These findings further enhance the understanding of the structural diversity of SEs in tobacco, serving as a valuable reference for future research on the elucidation, synthesis, and metabolism of SEs.


Asunto(s)
Ésteres , Sacarosa , Espectrometría de Masas , Cromatografía Liquida , Isomerismo , Cromatografía Líquida de Alta Presión/métodos
13.
Anal Chem ; 94(14): 5463-5468, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35357149

RESUMEN

This study presents the rapid surface detection of explosives by employing atmospheric pressure arc desorption/ionization mass spectrometry (APADI-MS) using point-to-plane arc discharge. In APADI, neutral explosives readily bind to the gas-phase nitrate ion, NO3-, induced by arc discharge to form anionic adducts [M+NO3]-. This avoids the need for inorganic anionic additives such as NO3-, NO2-, Cl-, acetate, and trifluoroacetate for unique explosive ionization pathways and simplifies mass spectra. The analytical performance of APADI was thoroughly evaluated for the rapid detection of 10 explosives at levels in the range of 800 fg-1 µg. Arc-induced nitrogen oxide anions promoted the formation of characteristic adducts, such as [M+NO3]-, and improved the instrument response for all the explosives tested. APADI showed considerable sensitivity in the negative ion mode with limits of detection in the low picogram range, particularly when explosives were analyzed on a copper or aluminum foil substrate. APADI coupled with an Orbitrap mass spectrometer displayed a good linear response for the studied explosives. The linearity and intraday and interday precisions were evaluated, demonstrating the feasibility and robustness of APADI-MS for the detection of trace explosives on solid surfaces. The mechanisms of APADI for explosive ionization and desorption were examined and verified by performing density functional theory calculations.


Asunto(s)
Sustancias Explosivas , Aniones , Presión Atmosférica , Sustancias Explosivas/análisis , Indicadores y Reactivos , Espectrometría de Masas/métodos , Nitratos/análisis
14.
Anal Chem ; 94(50): 17360-17364, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36473082

RESUMEN

Aerosols generated by bubble bursting have been proved to promote the extraction of analytes and have ultrahigh electric fields at their water-air interfaces. This study presented a simple and efficient ionization method, carbon dioxide microbubble bursting ionization (CDMBI), without the presence of an exogenous electric field (namely, zero voltage), by simulating the interfacial chemistries of sea spray aerosols. In CDMBI, microbubbles are generated in situ by continuous input of carbon dioxide into an aqueous solution containing low-concentration analytes. The microbubbles extract low- and high-polarity analytes as they pass through the aqueous solution. Upon reaching the water-air interface, these microbubbles burst to produce charged aerosol microdroplets with an average diameter of 260 µm (8.1-10.4 nL in volume), which are immediately transferred to a mass spectrometer for the detection and identification of extracted analytes. The above analytical process occurs every 4.2 s with a stable total ion chromatogram (relative standard deviation: 9.4%) recorded. CDMBI mass spectrometry (CDMBI-MS) can detect surface-active organic compounds in aerosol microdroplets, such as perfluorooctanoic acid, free fatty acids epoxidized by bubble bursting, sterols, and lecithins in soybean and egg, with the limit of detection reaching the level of fg/mL. In addition, coupling CDMBI-MS with an exogenous voltage yields relatively weak gains in ionization efficiency and sensitivity of analysis. The results suggested that CDMBI can simultaneously accomplish both bubbling extraction and microbubble bursting ionization. The mechanism of CDMBI involves bubbling extraction, proton transfer, inlet ionization, and electrospray-like ionization. Overall, CDMBI-MS can work in both positive and negative ion modes without necessarily needing an exogenous high electric field for ionization and quickly detect trace surface-active analytes in aqueous solutions.


Asunto(s)
Dióxido de Carbono , Microburbujas , Espectrometría de Masas , Aerosoles/química , Agua/química , Espectrometría de Masa por Ionización de Electrospray/métodos
15.
Anal Chem ; 94(43): 15002-15009, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255385

RESUMEN

In mass spectrometry (MS), nonvolatile salts contaminate the transmission system and cause ion suppression, hampering MS analysis. When MS is combined with liquid chromatography (LC) that uses a salty mobile phase, the problems become more intractable due to long analysis time. Here, a novel heat-assisted dual neutral spray ionization (HADSI) method was developed, which projected sample solution spray and solvent spray onto a heated plate to achieve online desalting and high ionization. The experimental parameters of HADSI were optimized, which indicated that the plate temperature was crucial for ionization and desalination. Eight drug compounds dissolved in various commonly used buffers were directly analyzed using HADSI-MS, even though the concentration of PBS buffer reached 500 mmol/L. The established method showed considerable sensitivity in the positive ion mode with the limits of detection at the level of nmol/L, and good linearity (R2 > 0.99) was achieved for all the analyzed compounds. The repeatability and intra- and interday precisions of the method were evaluated, demonstrating the feasibility and reliability of the analysis of salty samples by HADSI-MS. Further, the method was demonstrated to tolerate the long-time analysis of high-salt LC eluates and the device was easy to maintain. Finally, a crude roxithromycin product was separated by LC and then analyzed by HADSI-MS, and seven unknown impurities and nine known impurities were successfully detected. Our results indicated that HADSI-MS may have potential applications in academic and industrial fields.


Asunto(s)
Calor , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Reproducibilidad de los Resultados , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión
16.
Anal Chem ; 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562720

RESUMEN

The atmospheric oxidation of chemicals has produced many new unpredicted pollutants. A microwave plasma torch-based ion/molecular reactor (MPTIR) interfacing an online mass spectrometer has been developed for creating and monitoring rapid oxidation reactions. Oxygen in the air is activated by the plasma into highly reactive oxygen radicals, thereby achieving oxidation of thioethers, alcohols, and various environmental pollutants on a millisecond scale without the addition of external oxidants or catalysts (6 orders of magnitude faster than bulk). The direct and real-time oxidation products of polycyclic aromatic hydrocarbons and p-phenylenediamines from the MPTIR match those of the long-term multistep environmental oxidative process. Meanwhile, two unreported environmental compounds were identified with an MPTIR and measured in the actual water samples, which demonstrates the considerable significance of the proposed device for both predicting the environmental pollutants (non-target screening) and studying the mechanism of atmospheric oxidative processes.

17.
Rapid Commun Mass Spectrom ; 36(16): e9333, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35705519

RESUMEN

RATIONALE: Amides are the fundamental units of both peptides and proteins, and also important functional groups of medical chemicals. Investigation of the fragmentation mechanism of amides in the gas phase is scientifically important for structural analysis. However, understanding of this problem is still elusive. METHODS: Protonated N-phenyl-3-(phenylthio)propanamide and its derivatives were investigated using positive ion tandem mass spectrometry (ESI-MS/MS) with an LCQ mass spectrometer. Accurate mass analysis was conducted with a micrOTOF-QII mass spectrometer. Density functional theory (DFT) calculations using the Gaussian 03 program and deuterium-labelling (D-labelling) experiments were performed to verify the proposed fragmentation mechanism. RESULTS: Interpretation of the fragment ions in the collision-induced dissociation mass spectra showed that the ionizing proton in the protonated ion transferred from the most thermodynamically favorable carbonyl oxygen to the dissociative protonation site at amide nitrogen or sulfur atom upon collisional activation. The dissociation of the amide or the C-S bond was induced by such proton transfer. An ion-neutral complex (INC) was generated via the dissociation of the amide bond. In the INC, it was observed that the carbocation of the ionic part attacked the ortho phenyl carbon atom adjacent to the sulfur atom, and proton transfer from the carbon atom to the nitrogen atom led to the formation of protonated aniline. CONCLUSIONS: The fragmentation mechanism of protonated N-phenyl-3-(phenylthio)propanamide and its derivatives was proposed and elucidated. All the compounds studied showed similar fragmentation pathways, and the competitive formation of two ions, RC9 H9 OS+ and C6 H8 N+ , was observed. The generation of protonated aniline is mediated by INC in ESI-MS/MS.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Amidas , Compuestos de Anilina , Carbono , Iones/química , Nitrógeno , Protones , Espectrometría de Masa por Ionización de Electrospray/métodos , Azufre , Espectrometría de Masas en Tándem/métodos
18.
Anal Bioanal Chem ; 414(16): 4677-4684, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35538228

RESUMEN

The fates of nanomaterials (NMs) in vivo are greatly dependent on their interactions with human serum proteins. However, the interfacial molecular details of NMs-serum proteins are still difficult to be probed. Herein, the molecular interaction details of human serum albumin (HSA) with Au and SiO2 nanoparticles have been systematically interrogated and compared by using lysine reactivity profiling mass spectrometry (LRP-MS). We demonstrated the biocompatibility of Au is better than SiO2 nanoparticles and the NMs surface charge state played a more important role than particle size in the combination of NMs-HSA at least in the range of 15-40 nm. Our results will contribute to the fundamental mechanism understanding of NMs-serum protein interactions as well as the NMs rational design.


Asunto(s)
Nanopartículas , Nanoestructuras , Humanos , Nanoestructuras/química , Tamaño de la Partícula , Albúmina Sérica Humana , Dióxido de Silicio
19.
J Sep Sci ; 45(16): 3128-3138, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35691018

RESUMEN

Methazolamide is an important carbonic anhydrase inhibitor and is mainly used for the treatment of glaucoma. Studies are extremely rare regarding the impurities in methazolamide products. In this work, the high-performance liquid chromatography/high-performance liquid chromatography-mass spectrometry methods were established for the analysis of impurities in methazolamide products. Five impurities (A, B, C, D, and E) were detected using the established high-performance liquid chromatography/high-performance liquid chromatography-mass spectrometry methods. Of these impurities, impurities A, B, and D are known compounds, and impurities C and E are novel compounds that have never been reported before. The identities of impurities A, B, D, and E were recognized by comparing their retention times and mass spectra with those of synthesized standard compounds under the same high-performance liquid chromatography-mass spectrometry conditions. Moreover, the structures of impurities C and E were characterized using a variety of analytical techniques including multidimensional nuclear magnetic resonance spectroscopy, Fourier transforming infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and high-resolution quadrupole time-of-flight mass spectrometry. All of the five impurities are structural analogs of methazolamide. The formation mechanisms of these impurities were discussed.


Asunto(s)
Contaminación de Medicamentos , Metazolamida , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Espectrometría de Masas
20.
J Proteome Res ; 20(8): 3952-3962, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34229439

RESUMEN

Screening of characteristic biomarkers from chiral amino-containing metabolites in biological samples is difficult and important for the noninvasive diagnosis of gastric cancer (GC). Here, an enantiomeric pair of chlorine-labeled probes d-BPCl and l-BPCl was synthesized to selectively label d- and l-amino-containing metabolites in biological samples, respectively. Incorrect structural annotations were excluded according to the characteristic 3:1 abundance ratio of natural chlorine isotopes (35Cl and 37Cl) derived from the probes. A sensitive C18 HPLC-QQQ-MS/MS method in combination with the probes was then developed and applied in metabolomic analysis of amino-containing metabolites in urine samples. A total of 161 amino-containing metabolites were rapidly separated and determined, and 28 chiral amino acids and achiral glycine were quantified with good precision and accuracy. A total of 18 differential variables were discriminated by analyzing chiral amino-containing metabolites in urine samples of the GC patient and healthy person using the probe-based HPLC-MS/MS-MRM method combined with the orthogonal partial least squares discriminant analysis and Mann-Whitney U test with false discovery rate correction for multiple hypotheses. A diagnostic regression model including d-isoleucine, d-serine, and ß-(pyrazol-1-yl)-l-alanine and age was then constructed with an average prediction correctness of 88.9% in the validation set. This work established a close connection between gastric cancer and chiral amino-containing metabolites. The mass spectrometry data analyzed in the study are publicly available via Mendeley Data (DOI: 10.17632/4bd93j9yrr.1).


Asunto(s)
Cloro , Neoplasias Gástricas , Biomarcadores , Cromatografía Líquida de Alta Presión , Humanos , Metabolómica , Neoplasias Gástricas/diagnóstico , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA