Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 18(7): 4163-4171, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29874468

RESUMEN

Highly ordered Pt alloy structures are proven effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic-framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt3Co structures. It is very crucial for the formation of the ordered Pt3Co to carefully control the doping content of Co into the MOFs and the heating temperatures for Co diffusion. The optimal Pt3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs reversible hydrogen electrode (RHE) and only losing 12 mV after 30 000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests made evident by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt3Co intermetallic catalysts. The new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen and transition metal dopings.

2.
J Am Chem Soc ; 140(8): 2926-2932, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29411604

RESUMEN

We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L10-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Pt shell, especially the two atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO4 solution (at both room temperature and 60 °C) and in the membrane electrode assembly (MEA) at 80 °C. The L10-FePt/Pt catalyst has a mass activity of 0.7 A/mgPt from the half-cell ORR test and shows no obvious mass activity loss after 30 000 potential cycles between 0.6 and 0.95 V at 80 °C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). We are extending the concept and preparing other L10-MPt/Pt NPs, such as L10-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.

3.
Nano Lett ; 17(10): 6146-6150, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28873317

RESUMEN

Well-defined metal nanocrystals play important roles in various fields, such as catalysis, medicine, and nanotechnology. They are often synthesized through kinetically controlled process in colloidal systems that contain metal precursors and surfactant molecules. The chemical functionality of surfactants as coordinating ligands to metal ions however remains a largely unsolved problem in this process. Understanding the metal-ligand complexation and its effect on formation kinetics at the molecular level is challenging but essential to the synthesis design of colloidal nanocrystals. Herein we report that spontaneous ligand replacement and anion exchange control the form of coordinated Pt-ligand intermediates in the system of platinum acetylacetonate [Pt(acac)2], primary aliphatic amine, and carboxylic acid ligands. The formed intermediates govern the formation mode of Pt nanocrystals, leading to either a pseudo two-step or a one-step mechanism by switching on or off an autocatalytic surface growth. This finding shows the importance of metal-ligand complexation at the prenucleation stage and represents a critical step forward for the designed synthesis of nanocrystal-based materials.

4.
J Am Chem Soc ; 139(34): 12076-12083, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28749136

RESUMEN

Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru-O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7-δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.

5.
Nano Lett ; 16(10): 6599-6603, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27602435

RESUMEN

Intermetallics are compounds with long-range structural order that often lies in a state of thermodynamic minimum. They are usually considered as favorable structures for catalysis due to their high activity and robust stability. However, formation of intermetallic compounds is often regarded as element specific. For instance, Ag and Pt do not form alloy in bulk phase through the conventional metallurgy approach in almost the entire range of composition. Herein, we demonstrate a bottom-up approach to create a new Ag-Pt compositional intermetallic phase from nanoparticles. By thermally treating the corresponding alloy nanoparticles in inert atmosphere, we obtained an intermetallic material that has an exceptionally narrow Ag/Pt ratio around 52/48 to 53/47, and a structure of interchangeable closely packed Ag and Pt layers with 85% on tetrahedral and 15% on octahedral sites. This rather unique stacking results in wavy patterns of Ag and Pt planes revealed by scanning transmission electron microscope (STEM). This Ag-Pt compositional intermetallic phase is highly active for electrochemical oxidation of formic acid at low anodic potentials, 5 times higher than its alloy nanoparticles, and 29 times higher than the reference Pt/C at 0.4 V (vs RHE) in current density.

6.
Nano Lett ; 16(12): 7988-7992, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960506

RESUMEN

Thermal annealing is a common, and often much-needed, process to optimize the surface structure and composition of bimetallic nanoparticles for high catalytic performance. Such thermal treatment is often carried out either in air or under an inert atmosphere by a trial-and-error approach. Herewith, we present a new chemical vapor-assisted treatment, which can preserve the octahedral morphology of Ag-Pt nanoparticles while modifying the surface into preferred composition arrangements with site-selectivity for high catalytic activity. In situ environmental transmission electron microscope (ETEM) study reveals a relatively homogeneous distribution of Ag and Pt is generated on the surface of Ag-Pt nanoparticles upon exposure to carbon monoxide (CO), whereas Pt atoms preferably segregate to the edge regions when the gas atmosphere is switched to argon. Density functional theory (DFT) calculations suggest stabilization of Pt atoms is energetically favored in the form of mixed surface alloys when CO vapor is present. Without CO, Ag and Pt phase separate under the similar mild treatment condition. There exists a close correlation between the tunable surface structures and the catalytic activities of Ag-Pt octahedral nanoparticles.

7.
J Am Chem Soc ; 138(30): 9361-4, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27403658

RESUMEN

Highly selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with 2-propanol was achieved using SiC-supported Au nanoparticles as photocatalyst. The hydrogenation reached a turnover frequency as high as 487 h(-1) with 100% selectivity for the production of alcohol under visible light irradiation at 20 °C. This high performance is attributed to a synergistic effect of localized surface plasmon resonance of Au NPs and charge transfer across the SiC/Au interface. The charged metal surface facilitates the oxidation of 2-propanol to form acetone, while the electron and steric effects at the interface favor the preferred end-adsorption of α,ß-unsaturated aldehydes for their selective conversion to unsaturated alcohols. We show that this Au/SiC photocatalyst is capable of hydrogenating a large variety of α,ß-unsaturated aldehydes to their corresponding unsaturated alcohols with high conversion and selectivity.

8.
Nano Lett ; 14(12): 7188-94, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25369350

RESUMEN

This paper describes the synthesis, formation mechanism, and mechanical property of multilayered ultrathin Pd nanosheets. An anisotropic, Hanoi Tower-like assembly of Pd nanosheets was identified by transmission electron microscopy and atomic force microscopy (AFM). These nanosheets may contain ultrathin Pd layers, down to single unit cell thickness. Selected area electron diffraction and scanning transmission electron microscopy data show the interconnected atomically thick layers stacking vertically with rotational mismatches, resulting in unique diffractions and Moiré patterns. Density functional theory (DFT) calculation with van der Waals correction (DFT+vdW) shows the adsorption of Pd4(CO)4(OAc)4 on Pd(110) surface (Ead = -5.68 eV) is much stronger than that on Pd(100) (Ead = -4.72 eV) or on Pd(111) (Ead = -3.80 eV). The adsorption strength of this Pd complex is significantly stronger than that of CO on the same Pd surfaces. The DFT+vdW calculation results suggest a new mechanism for the observed anisotropic growth of nanosheets with unusually high aspect ratio, in which the competitive adsorptions between Pd4(CO)4(OAc)4 complex and CO on various surfaces result in a favored growth along the ⟨110⟩ directions and inhibition along ⟨111⟩ directions. The mechanical property of these multilayered Pd nanosheets was studied using AFM and nanoindentation techniques, which indicate multilayered nanosheets show more plastic deformation than the bulk in response to an applied force.

9.
Nano Lett ; 14(10): 5953-9, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25198201

RESUMEN

Two-dimensional (2D) materials often show a range of intriguing electronic, catalytic, and optical properties that differ greatly from conventional nanoparticles. While planar configuration is often desirable, a range of applications such as catalysis and sensing benefit greatly from the accessibility to large surface areas. The 2D materials generally tend to form stacks in order to reduce the overall surface energy. Such densely packed structures however are detrimental when access to high surface area is required. Herewith we demonstrate a chemical strategy to generate Pd three-dimensional (3D) structures from its flexible 2D nanosheets. Solvent polarity is shown to play an important role to control the final morphology of these nanosheets. Our data indicate when these Pd 3D materials were integrated into hydrogen sensing devices, response time was found to be an order of magnitude faster than their 2D-constrained counterparts. The easy accessibility to the surfaces by hydrogen gas is considered to be an important factor for the observed fast response time based on the sensing model.

10.
Angew Chem Int Ed Engl ; 53(51): 14087-91, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319757

RESUMEN

A new motif for infinite metal atom wires with tunable compositions and properties is developed based on the connection between metal paddlewheel and square planar complex moieties. Two infinite Pd chain compounds, [Pd4(CO)4(OAc)4Pd(acac)2] 1 and [Pd4(CO)4(TFA)4Pd(acac)2] 2, and an infinite Pd-Pt heterometallic chain compound, [Pd4(CO)4(OAc)4Pt(acac)2] 3, are identified by single-crystal X-ray diffraction analysis. In these new structures, the paddlewheel moiety is a Pd four-membered ring coordinated by bridging carboxylic ligands and µ2 carbonyl ligands. The planar moiety is either Pd(acac)2 or Pt(acac)2 (acac = acetylacetonate). These moieties are connected by metallophilic interactions. The results showed that these one-dimensional metal wire compounds have photoluminescent properties that are tunable by changing ligands and metal ions. 3 can also serve as a single source precursor for making Pd4Pt bimetallic nanostructures with precise control of metal composition.

11.
Chem Asian J ; 19(6): e202300955, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38332680

RESUMEN

Activation of inert CO2 molecules for the reverse water gas shift (RWGS) reaction is tackled by incorporating magnesium oxide as a support material for copper, forming a Cu/MgO supported catalyst. The RWGS performance is greatly improved when compared with pure Cu or carbon supported Cu (Cu/C). Operating under a weight hourly space velocity (WHSV) of 300,000 mL ⋅ g-1 ⋅ h-1, the Cu/MgO catalyst demonstrates high activity, maintaining over 70 % equilibrium conversion and nearly 100 % CO selectivity in a temperature range of 300-600 °C. In contrast, both Cu/C and commercial Cu, even at ten-times lower WHSV, can only achieve up to 40 % of the equilibrium conversion and quickly deactivated due to sintering. Based on the studies of in-situ temperature resolved infrared spectroscopy and temperature programmed desorption, the improved RWGS performance is attributed to the unique adsorption behavior of CO2 on Cu/MgO. Density functional theory studies provides a plausible explanation from a surface reaction perspective and reveals the spill-over property of CO2 from MgO to Cu being critical.

12.
Chem Soc Rev ; 41(24): 8066-74, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23104135

RESUMEN

When nanoparticles become small (ca. <5 nm), surface stress becomes significant and generates strain that results in a change of surface structures. In this regard, the surface lattice of nanoparticles can be engineered to create strains or other structural changes with atomic positions away from the normal lattice points. Such changes impact the electronic and catalytic properties of nanoparticles. Recently, several groups have reported the change of catalytic and electrocatalytic properties of bimetallic nanoparticles. In this tutorial review, we discuss the principles related to lattice strain and other distorted structures, and the catalytic properties of bimetallic nanostructures.

13.
Adv Mater ; 30(11)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29363838

RESUMEN

Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 µg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.

14.
Nanoscale ; 8(5): 2548-53, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26758678

RESUMEN

This paper describes the facile and surfactant-free synthesis of faceted Pt-Ni alloy nanoparticle electrocatalysts using neat N-formylpiperidine as a new type of solvent. Unlike the widely-used colloidal synthesis based on long-carbon chain surfactants, nanoparticles made in neat N-formylpiperidine possess a directly accessible surface for electrocatalytic reactions, making it a very attractive alternative solvent. The area-specific oxygen reduction reaction (ORR) activity is much higher than the commercial Pt/C catalyst reference and reaches a maximum of 1.12 mA cm(-2) for the Pt-Ni alloy nanoparticles. We observed that the freshly formed Pt-Ni alloy could have controllable bulk and near surface compositions under the same initial reaction conditions and precursor ratio. The change in the composition could be attributed to the effect of CO on the formation of uniform nuclei at the initial stage, and a different deposition rate between Pt and Ni metals during the growth. The well-defined Pt-Ni nanoparticle catalysts show strong composition-dependent catalytic behavior in ORR, highlighting the important role of controlling the growth kinetics in the preparation of active Pt-Ni ORR catalysts.

15.
Chem Commun (Camb) ; 51(75): 14171-14174, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26264283

RESUMEN

Flexible, charged Pd nanosheets were prepared by using short chain thiolated carboxylic acids and amines. They could wrap around amine or hydroxyl functionalized micron-sized spheres driven by electrostatic interactions. Upon incubation with HepG2 cells, the positively charged cysteamine (CA) functionalized Pd nanosheets exhibited a much higher cytotoxicity, showing more than 80% cell death at 100 ppm than the negatively charged 3-mercaptopropionic acid (MPA) functionalized ones which caused 30% cell death. The results show through surface functionalization Pd nanosheets can be modified to interact differently with HepG2 cancerous cells, resulting in varied cytotoxicity.


Asunto(s)
Nanopartículas del Metal/química , Compuestos Organometálicos/farmacología , Paladio/farmacología , Aminas/química , Aminas/farmacología , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Compuestos Organometálicos/química , Paladio/química , Tamaño de la Partícula , Electricidad Estática , Relación Estructura-Actividad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA