Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 143(24): 5940-5949, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30345433

RESUMEN

AFM-IR is a photothermal technique that combines AFM and infrared (IR) spectroscopy to unambiguously identify the chemical composition of a sample with tens of nanometer spatial resolution. So far, it has been successfully used in contact mode in a variety of applications. However, the contact mode is unsuitable for soft or loosely adhesive samples such as polymeric nanoparticles (NPs) of less than 200 nm of wide interest for biomedical applications. We describe here the theoretical basis of the innovative tapping AFMIR mode that can address novel challenges in imaging and chemical mapping. The new method enables gaining information not only on NP morphology and composition, but also reveals drug location and core-shell structures. Whereas up to now the locations of NP components could only be hypothesized, tapping AFM-IR allows accurately visualizing both the location of the NPs' shells and that of the incorporated drug, pipemidic acid. The preferential accumulation of the drug in the NPs' top layers was proved, despite its low concentration (<1 wt%). These studies pave the way towards the use of tapping AFM-IR as a powerful tool to control the quality of NP formulations based on individual NP detection and component quantification.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Espectrofotometría Infrarroja/métodos , Ácido Pipemídico/química , Alcohol Polivinílico/química , Tensoactivos/química
2.
RSC Adv ; 13(16): 10923-10939, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37033421

RESUMEN

We explored a series of cyclodextrin (CyD) polymers composed either of a single CyD type or a mixture of two CyD types to encapsulate simultaneously different compounds with potential therapeutic interest for multimodal prostate cancer treatment. New mixed CyD polymers were prepared in alkaline water starting from the naturally occurring monomers and a low-cost crosslinking agent. Batches of 200 g of polymer were easily obtained. By means of optical spectroscopy we proved the co-encapsulation of 3 compounds in the polymers: the drugs cabazitaxel (CBX) and bicalutamide (BIC), and the photosensitizer chlorin e6 (Ce6). pßCyD and mixed pαßCyD polymers performed best for single drug solubilization. In the co-encapsulation of BIC and CBX by pßCyD and pαßCyD, pßCyD stands out in drug solubilization ability. Avoiding the use of organic solvents, it was possible to dissolve up to 0.1 mM CBX with 10 mg ml-1 pßCyD polymer and, with 100 mg ml-1, even 1.7 mM BIC, a 100-fold improvement compared to water. Spectroscopic studies afforded the binding constants of CBX and BIC with pßCyD forming complexes of 1 : 2 stoichiometry (drug : CyD) and CBX displayed significantly higher affinity. Also DFT calculations suggested that the drugs are more stable when complexed by two CyD units. Ce6 could be encapsulated simultaneously with the other two drugs in pßCyD and, most importantly, is able to produce singlet oxygen efficiently. Thanks to a single inexpensive CyD-based polymer we were able to produce a three-in-one platform for future implementation of combined chemotherapy and photodynamic therapy. These achievements are most relevant as nanomedicines are continuously proposed but their potential for translation to the pharma industry is compromised by their limited potential for industrial upscale.

3.
Macromol Biosci ; 22(8): e2200090, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35452159

RESUMEN

Cyclodextrin-based polymers can be prepared starting from the naturally occurring monomers following green and low-cost procedures. They can be selectively derivatized pre- or post-polymerization allowing to fine-tune functionalities of ad hoc customized polymers. Preparation nowadays has reached the 100 g scale thanks also to the interest of industries in these extremely versatile compounds. During the last 15 years, these macromolecules have been the object of intense investigations in view of possible biomedical applications as the ultimate goal and large amounts of scientific data are now available. Compared to their monomeric models, already used in the formulation of various therapeutic agents, they display superior behavior in terms of their solubility in water and solubilizing power toward drugs incompatible with biological fluids. Moreover, they allow the combination of more than one type of therapeutic agent in the polymeric system. In this review, a complete state of the art on the knowledge and potentialities of water-soluble cyclodextrin-based polymers as therapeutic agents as well as carrier systems for different types of therapeutics to implement combination therapy is provided. Finally, a perspective on their assets for innovation in disease treatment as well as their limits that still need to be addressed is given.


Asunto(s)
Ciclodextrinas , Polímeros , Polimerizacion , Solubilidad , Agua
4.
ACS Nano ; 13(4): 3992-4007, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30822386

RESUMEN

Multi-drug-resistant tuberculosis (TB) is a major public health problem, concerning about half a million cases each year. Patients hardly adhere to the current strict treatment consisting of more than 10 000 tablets over a 2-year period. There is a clear need for efficient and better formulated medications. We have previously shown that nanoparticles made of cross-linked poly-ß-cyclodextrins (pßCD) are efficient vehicles for pulmonary delivery of powerful combinations of anti-TB drugs. Here, we report that in addition to being efficient drug carriers, pßCD nanoparticles are endowed with intrinsic antibacterial properties. Empty pßCD nanoparticles are able to impair Mycobacterium tuberculosis (Mtb) establishment after pulmonary administration in mice. pßCD hamper colonization of macrophages by Mtb by interfering with lipid rafts, without inducing toxicity. Moreover, pßCD provoke macrophage apoptosis, leading to depletion of infected cells, thus creating a lung microenvironment detrimental to Mtb persistence. Taken together, our results suggest that pßCD nanoparticles loaded or not with antibiotics have an antibacterial action on their own and could be used as a carrier in drug regimen formulations effective against TB.


Asunto(s)
Antituberculosos/uso terapéutico , Portadores de Fármacos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Nanopartículas/uso terapéutico , Tuberculosis/tratamiento farmacológico , beta-Ciclodextrinas/uso terapéutico , Animales , Antituberculosos/administración & dosificación , Portadores de Fármacos/administración & dosificación , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/microbiología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , beta-Ciclodextrinas/administración & dosificación
5.
Acta Pharm Sin B ; 8(3): 420-431, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29881681

RESUMEN

Nowadays, biodegradable polymers such as poly(lactic acid) (PLA), poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL) remain the most common biomaterials to produce drug-loaded nanoparticles (NPs). Pipemidic acid (PIP) is a poorly soluble antibiotic with a strong tendency to crystallize. PIP incorporation in PLA/PLGA NPs was challenging because of PIP crystals formation and burst release. As PIP had a poor affinity for the NPs, an alternative approach to encapsulation was used, consisting in coupling PIP to PCL. Thus, a PCL-PIP conjugate was successfully synthesized by an original drug-initiated polymerization in a single step without the need of catalyst. PCL-PIP was characterized by NMR, IR, SEC and mass spectrometry. PCL-PIP was used to prepare self-assembled NPs with PIP contents as high as 27% (w/w). The NPs were characterized by microscopy, DLS, NTA and TRPS. This study paves the way towards the production of NPs with high antibiotic payloads by drug-initiated polymerization. Further studies will deal with the synthesis of novel polymer-PIP conjugates with ester bonds between the drug and PCL. PIP can be considered as a model drug and the strategy developed here could be extended to other challenging antibiotics or anticancer drugs and employed to efficiently incorporate them in NPs.

7.
Int J Pharm ; 531(2): 568-576, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28546070

RESUMEN

Ethionamide (ETH) is a second line antitubercular drug suffering from poor solubility in water and strong tendency to crystallize. These drawbacks were addressed by loading ETH in ß-cyclodextrin (ßCyD)-based carriers. The drug was incorporated in a molecular state avoiding crystallization even for long-term storage and obtaining a tenfold increased solubility up to 25mM. The binding of ETH to polymeric ßCyD nanoparticles (pßCyD NPs) was investigated in neutral aqueous medium by means of solubility phase diagrams, circular dichroism (CD) and UV-vis absorption and compared with the corresponding ßCyD monomer. The binding constants and the absolute CD spectra of the drug complexes were determined by global analysis of multiwavelength data from spectroscopic titrations. The spectroscopic and photophysical properties of the complexes evidenced an alcohol-like environment for ETH included in the cavity. Additionally, ETH was found to be located not only in ßCyD cavities, but also in confined microdomains inside the crosslinked NPs. This double modality of complexation together with a slightly higher binding constant makes the utilization of pßCyD NPs preferable over the monomeric ßCyDs. In order to pave the way to future in vitro experiments, fluorescein labeled pßCyDs were synthesized. Interestingly the FITC labeling did not hamper the encapsulation of ETH and the drug improved the fluorescent signal of FITC molecules. The ßCyD-based carriers appeared as versatile "green" systems for efficient incorporation and future delivery of ETH.


Asunto(s)
Portadores de Fármacos/química , Etionamida/química , beta-Ciclodextrinas/química , Cristalización , Solubilidad
8.
Sci Rep ; 7(1): 5390, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710351

RESUMEN

Tuberculosis (TB) is a leading infectious cause of death worldwide. The use of ethionamide (ETH), a main second line anti-TB drug, is hampered by its severe side effects. Recently discovered "booster" molecules strongly increase the ETH efficacy, opening new perspectives to improve the current clinical outcome of drug-resistant TB. To investigate the simultaneous delivery of ETH and its booster BDM41906 in the lungs, we co-encapsulated these compounds in biodegradable polymeric nanoparticles (NPs), overcoming the bottlenecks inherent to the strong tendency of ETH to crystallize and the limited water solubility of this Booster. The efficacy of the designed formulations was evaluated in TB infected macrophages using an automated confocal high-content screening platform, showing that the drugs maintained their activity after incorporation in NPs. Among tested formulations, "green" ß-cyclodextrin (pCD) based NPs displayed the best physico-chemical characteristics and were selected for in vivo studies. The NPs suspension, administered directly into mouse lungs using a Microsprayer®, was proved to be well-tolerated and led to a 3-log decrease of the pulmonary mycobacterial load after 6 administrations as compared to untreated mice. This study paves the way for a future use of pCD NPs for the pulmonary delivery of the [ETH:Booster] pair in TB chemotherapy.


Asunto(s)
Antituberculosos/farmacología , Quimioterapia Combinada/métodos , Etionamida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxadiazoles/farmacología , Piperidinas/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico , Administración por Inhalación , Animales , Modelos Animales de Enfermedad , Portadores de Fármacos , Composición de Medicamentos/métodos , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/patogenicidad , Nanopartículas/administración & dosificación , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Células RAW 264.7 , Solubilidad , Resultado del Tratamiento , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/patología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología , beta-Ciclodextrinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA