Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280562

RESUMEN

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Asunto(s)
Diabetes Mellitus Tipo 2 , Deficiencia de Vitamina D , Humanos , Hemoglobina Glucada , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/epidemiología , Estudios Transversales , Vitamina D/uso terapéutico , Vitaminas , Suplementos Dietéticos , Estudios Observacionales como Asunto
2.
BMC Microbiol ; 23(1): 291, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845637

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is a critical global issue that poses significant threats to human health, animal welfare, and the environment. With the increasing emergence of resistant microorganisms, the effectiveness of current antimicrobial medicines against common infections is diminishing. This study aims to conduct a competitive meta-analysis of surveillance data on resistant microorganisms and their antimicrobial resistance patterns in two countries, Egypt and the United Kingdom (UK). METHODS: Data for this study were obtained from published reports spanning the period from 2013 to 2022. In Egypt and the UK, a total of 9,751 and 10,602 food samples were analyzed, respectively. Among these samples, 3,205 (32.87%) in Egypt and 4,447 (41.94%) in the UK were found to contain AMR bacteria. RESULTS: In Egypt, the predominant resistance was observed against ß-lactam and aminoglycosides, while in the United Kingdom, most isolates exhibited resistance to tetracycline and ß-lactam. The findings from the analysis underscore the increasing prevalence of AMR in certain microorganisms, raising concerns about the development of multidrug resistance. CONCLUSION: This meta-analysis sheds light on the escalating AMR problem associated with certain microorganisms that pose a higher risk of multidrug resistance development. The significance of implementing One Health AMR surveillance is emphasized to bridge knowledge gaps and facilitate accurate AMR risk assessments, ensuring consumer safety. Urgent actions are needed on a global scale to combat AMR and preserve the effectiveness of antimicrobial treatments for the well-being of all living beings.


Asunto(s)
Antiinfecciosos , Salud Única , Animales , Humanos , Antibacterianos/uso terapéutico , beta-Lactamas , Farmacorresistencia Bacteriana , Egipto , Reino Unido
3.
Virus Genes ; 59(3): 464-472, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004601

RESUMEN

There is a growing interest in phages as potential biotechnological tools in human health owing to the antibacterial activity of these viruses. In this study, we characterized a new member (named PhiV_005_BRA/2016) of the recently identified phage species Phietavirus Henu 2. PhiV_005_BRA/2016 was detected through metagenomic analysis of stool samples of individuals with acute gastroenteritis. PhiV_005_BRA/2016 contains double-stranded linear DNA (dsDNA), it has a genome of 43,513 base pairs (bp), with a high identity score (99%) with phage of the genus Phietavirus, species of Phietavirus Henu 2. Life style prediction indicated that PhiV_005_BRA/2016 is a lysogenic phage whose the main host is methicillin-resistant Staphylococcus aureus (MRSA). Indeed, we found PhiV_005_BRA/2016 partially integrated in the genome of distinct MRSA strains. Our findings highlights the importance of large-scale screening of bacteriophages to better understand the emergence of multi-drug resistant bacterial.


Asunto(s)
Bacteriófagos , Gastroenteritis , Staphylococcus aureus Resistente a Meticilina , Siphoviridae , Infecciones Estafilocócicas , Humanos , Viroma , Infecciones Estafilocócicas/microbiología
4.
Virus Genes ; 59(1): 167-172, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36394716

RESUMEN

The totiviridae family contains viruses with double-stranded RNA genomes of 4.6-7.0 kpb, which encode a capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), and they are approximately 40 nm in diameter with icosahedral symmetry. Totiviruses were first isolated from mosquitoes collected in Shaanxi Province (China). Here, we report a new Aedes aegypti Totivirus (AaTV) identified in mosquitoes from the Amazon rainforest. Mosquitoes (Diptera: Culicidae) were collected from a forest reserve belonging to the Amazon forest in the city of Macapá, Amapá state, Northern Brazil. A viral sequence with a 5748 nucleotide length that was nearly identical to Aedes aegypti Totivirus (AaTV), here named Aedes aegypti Totivirus BR59AP, was detected. A detailed molecular analysis was performed and shows that AaTV-BR59AP is highly related to the AaTV strain from the Caribbean region. We emphasize the importance of the characterization of new viruses in mosquitoes to deepen our understanding of viral diversity in insects and their potential role in disease.


Asunto(s)
Aedes , Totiviridae , Totivirus , Virus , Animales , Totivirus/genética , Brasil , Totiviridae/genética
5.
J Nanobiotechnology ; 21(1): 148, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149615

RESUMEN

Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.


Asunto(s)
Nanocompuestos , Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/química , Micelas , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Portadores de Fármacos/química
6.
Hum Mol Genet ; 29(18): 3094-3106, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32916703

RESUMEN

High-altitude pulmonary edema (HAPE) is a noncardiogenic form of pulmonary edema, which is induced upon exposure to hypobaric hypoxia at high altitude (HA). Hypobaric hypoxia generates reactive oxygen species that may damage telomeres and disturb normal physiological processes. Telomere complex comprises of multiple proteins, of which, tankyrase (TNKS) is actively involved in DNA damage repairs. We hence investigated the association of TNKS and telomeres with HAPE to delineate their potential role at HA. The study was performed in three groups, High-altitude pulmonary edema patients (HAPE-p, n = 200), HAPE-resistant sojourners (HAPE-r, n = 200) and highland permanent healthy residents (HLs, n = 200). Variants of TNKS were genotyped using polymerase chain reaction-restriction fragment length polymorphism. Plasma TNKS level was estimated using enzyme-linked immunosorbent assay, expression of TNKS and relative telomere length were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and telomerase activity was assessed by the telomere repeat amplification protocol assay. TNKS poly-ADP ribosylates the telomere-repeat factor (TRF), which is a negative regulator of telomere length. Consequently, TRF expression was also measured by RT-qPCR. The TNKS heterozygotes rs7015700GA were prevalent in HLs compared to the HAPE-p and HAPE-r. The plasma TNKS was significantly decreased in HAPE-p than HAPE-r (P = 0.006). TNKS was upregulated 9.27 folds in HAPE-p (P = 1.01E-06) and downregulated in HLs by 3.3 folds (P = 0.02). The telomere length was shorter in HAPE-p compared to HAPE-r (P = 0.03) and HLs (P = 4.25E-4). The telomerase activity was significantly higher in HAPE-p compared to both HAPE-r (P = 0.01) and HLs (P = 0.001). HAPE-p had the lowest TNKS levels (0.186 ± 0.031 ng/µl) and the highest telomerase activity (0.0268 amoles/µl). The findings of the study indicate the association of TNKS and telomeres with HA adaptation/maladaptation.


Asunto(s)
Mal de Altura/genética , Predisposición Genética a la Enfermedad , Hipertensión Pulmonar/genética , Tanquirasas/genética , Telomerasa/genética , Homeostasis del Telómero/genética , Adulto , Anciano , Alelos , Altitud , Mal de Altura/fisiopatología , Daño del ADN/genética , Reparación del ADN/genética , Femenino , Estudios de Asociación Genética , Genotipo , Voluntarios Sanos , Humanos , Hipertensión Pulmonar/fisiopatología , Hipoxia/genética , Hipoxia/fisiopatología , Masculino , Persona de Mediana Edad , Polimorfismo de Longitud del Fragmento de Restricción/genética , Telómero/genética
7.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209118

RESUMEN

The use of F. religiosa might be beneficial in inflammatory illnesses and can be used for a variety of health conditions. In this article, we studied the identification of antioxidants using (DPPH) 2,2-Diphenyl-1-picrylhydrazylradical scavenging activity in Ficus religiosa, as F. religiosa is an important herbal plant, and every part of it has various medicinal properties such as antibacterial properties that can be used by the researchers in the development and design of various new drugs. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) is a popular, quick, easy, and affordable approach for the measurement of antioxidant properties that includes the use of the free radicals used for assessing the potential of substances to serve as hydrogen providers or free-radical scavengers (FRS). The technique of DPPH testing is associated with the elimination of DPPH, which would be a stabilized free radical. The free-radical DPPH interacts with an odd electron to yield a strong absorbance at 517 nm, i.e., a purple hue. An FRS antioxidant, for example, reacts to DPPH to form DPPHH, which has a lower absorbance than DPPH because of the lower amount of hydrogen. It is radical in comparison to the DPPH-H form, because it causes decolorization, or a yellow hue, as the number of electrons absorbed increases. Decolorization affects the lowering capacity significantly. As soon as the DPPH solutions are combined with the hydrogen atom source, the lower state of diphenylpicrylhydrazine is formed, shedding its violet color. To explain the processes behind the DPPH tests, as well as their applicability to Ficus religiosa (F. religiosa) in the manufacture of metal oxide nanoparticles, in particular MgO, and their influence on antioxidants, a specimen from the test was chosen for further study. According to our findings, F. religiosa has antioxidant qualities and may be useful in the treatment of disorders caused by free radicals.


Asunto(s)
Compuestos de Bifenilo/antagonistas & inhibidores , Ficus/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Picratos/antagonistas & inhibidores , Carbohidratos/química , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Proteínas de Plantas/química , Azúcares/química
8.
Arch Virol ; 166(3): 905-913, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33462673

RESUMEN

From 2010-2016, a total of 251 stool samples were screened for norovirus using next-generation sequencing (NGS) followed by phylogenetic analysis to investigate the genotypic diversity of noroviruses in rural and low-income urban areas in northern Brazil. Norovirus infection was detected in 19.9% (50/251) of the samples. Eight different genotypes were identified: GII.4_Sydney[P31] (64%, 32/50), GII.6[P7] (14%, 7/50), GII.17[P17] (6%, 3/50), GII.1[P33] (6%, 3/50), GII.3[P16] (4%, 2/50), GII.2[P16] (2%, 1/50), GII.2[P2] (2%, 1/50), and GII.4_New Orleans[P4] (2%, 1/50). Distinct GII.6[P7] variants were recognized, indicating the presence of different co-circulating strains. Elucidating norovirus genetic diversity will improve our understanding of their potential health burden, in particular for the GII.4_Sydney[P31] variant.


Asunto(s)
Infecciones por Caliciviridae/epidemiología , Gastroenteritis/epidemiología , Norovirus/genética , Norovirus/aislamiento & purificación , Pobreza/estadística & datos numéricos , Secuencia de Bases , Brasil/epidemiología , Estudios Transversales , Heces/virología , Gastroenteritis/virología , Variación Genética/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Epidemiología Molecular , Norovirus/clasificación , Filogenia , ARN Viral/genética
9.
Glycobiology ; 24(11): 979-90, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24946787

RESUMEN

Glycation is the result of covalent bonding of a free amino group of biological macromolecules with a reducing sugar, which results in the formation of a Schiff base that undergoes rearrangement, dehydration and cyclization to form a more stable Amadori product. The final products of nonenzymatic glycation of biomacromolecules like DNA, proteins and lipids are known as advanced glycation end products (AGEs). AGEs may be generated rapidly or over long times stimulated by distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. Both Schiff base and Amadori glycation products generate free radicals resulting in decline of antioxidant defense mechanisms and can damage cellular organelles and enzymes. This critical review primarily focuses on the mechanistic insight of glycation and the most probable route for the formation of glycation products and their therapeutic interventions. Furthermore, the prevention of glycation reaction using therapeutic drugs such as metformin, pyridoxamine and aminoguanidine (AG) are discussed with special emphasis on the novel concept of the bioconjugation of these drugs like, AG with gold nanoparticles (GNPs). At or above 10 mM concentration, AG is found to be toxic and therefore has serious health concerns, and the study warrants doing this novel bioconjugation of AG with GNPs. This approach might increase the efficacy of the AG at a reduced concentration with low or no toxicity. Using the concept of synthesis of GNPs with abovementioned drugs, it is assumed that toxicity of various drugs which are used at high doses can be minimized more effectively.


Asunto(s)
Glucosa/metabolismo , Ciclización , ADN/química , Proteínas/química , ARN/química
10.
Sci Rep ; 14(1): 631, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182678

RESUMEN

Probiotics have gained a significant attention as a promising way to improve gut health and overall well-being. The increasing recognition of the potential health advantages associated with functional food products, leading to a specific emphasis on co-encapsulating probiotic bacteria and bioactive compounds within a unified matrix. To further explore this concept, a meta-analysis was performed to assess the effects of probiotics encapsulated in nanoparticles. A comprehensive meta-analysis was conducted, encompassing 10 papers published from 2017 to 2022, focusing on the encapsulation of probiotics within nanoparticles and their viability in various gastrointestinal conditions. The selection of these papers was based on their direct relevance to the research topic. Random-effect models were used to aggregate study-specific risk estimates. In the majority of studies, it was observed that nano-encapsulated nanoparticles showed improved viability over time compared to their free state counterparts. At various time intervals, the odds ratios (OR) with 95% confidence intervals (CI) were estimated using fixed and random effect models. At 0 min, the OR (95%CI) was 2.79 (2.79; 2.80) and 2.38 (2.14; 2.64) for. At 30 and 60 min observation was at similar rate of 2.23 (2.23; 2.24) and 2.05 (1.73; 2.43). However, at 90 min it was 1.39 (1.39; 1.39) and 1.66 (1.29; 2.14) and at 120 min 2.41 (2.41; 2.42) and 2.03 (1.63; 2.52). Overall evaluation of encapsulation revealed an improvement in probiotic bacterial viability in simulated the gastrointestinal environments.


Asunto(s)
Nanopartículas , Probióticos , Alimentos Funcionales , Viabilidad Microbiana , Oportunidad Relativa
11.
JMIRx Med ; 5: e51787, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38606668

RESUMEN

Background: Animal-assisted therapy, also known as pet therapy, is a therapeutic intervention that involves animals to enhance the well-being of individuals across various populations and settings. Objective: This systematic study aims to assess the outcomes of animal-assisted therapy interventions and explore the associated policies. Methods: A total of 16 papers published between 2015 and 2023 were selected for analysis. These papers were chosen based on their relevance to the research topic of animal-assisted therapy and their availability in scholarly databases. Thematic synthesis and meta-analysis were used to synthesize the qualitative and quantitative data extracted from the selected papers. Results: The analysis included 16 studies that met the inclusion criteria and were deemed to be of moderate or higher quality. Among these studies, 4 demonstrated positive results for therapeutic mediation and one for supportive mediation in psychiatric disorders. Additionally, all studies showed positive outcomes for depression and neurological disorders. Regarding stress and anxiety, 3 studies indicated supportive mediation, while 2 studies showed activating mediation. Conclusions: The overall assessment of animal-assisted therapy shows promise as an effective intervention in promoting well-being among diverse populations. Further research and the establishment of standardized outcome assessment measures and comprehensive policies are essential for advancing the field and maximizing the benefits of animal-assisted therapy.

12.
J Biomol Struct Dyn ; 42(5): 2449-2463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37199276

RESUMEN

Available anti-leishmanial drugs are associated with toxic side effects, necessitating the search for safe and effective alternatives. This study is focused on identifying traditional medicinal plant natural products for anti-leishmanial potential and possible mechanism of action. Compounds S and T. cordifolia residual fraction (TC-5) presented the best anti-leishmanial activity (IC50: 0.446 and 1.028 mg/ml) against promastigotes at 48 h and less cytotoxicity to THP-1 macrophages. These test agents elicited increased expression of pro-inflammatory cytokines; TNFα and IL-12. In infected untreated macrophages, NO release was suppressed but was significantly (p < 0.05) increased in infected cells treated with compound S. Importantly, Compound S was found to interact with LdTopoIIdimer in silico, resulting in a likely reduced ability of nucleic acid (dsDNA)-remodelling and, as a result, parasite proliferation in vitro. Thereby, Compound S possesses anti-leishmanial activity and this effect occurs via a Th1-mediated pro-inflammatory response. An increase in NO release and its inhibitory effect on LdTopoII may also contribute to the anti-leishmanial effect of compound S. These results show the potential of this compound as a potential starting point for the discovery of novel anti-leishmanial leads.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Plantas Medicinales , Extractos Vegetales/farmacología , Citocinas/metabolismo , Antiprotozoarios/farmacología
13.
Trans R Soc Trop Med Hyg ; 118(3): 206-222, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-37972992

RESUMEN

Scrub typhus is one of the most neglected tropical diseases, a leading cause of acute undifferentiated febrile illness in areas of the 'tsutsugamushi triangle', diagnosed frequently in South Asian countries. The bacteria Orientia tsutsugamushi is the causative agent of the disease, which enters the human body through the bite of trombiculid mites (also known as chiggers) of the genus Leptotrombidium deliense. Diagnosis of the disease is challenging, as its early symptoms mimic other febrile illnesses like dengue, influenza and corona viruses. Lack of rapid, reliable and cost-effective diagnostic methods further complicates the identification process. Northeast India, a mountainous region with a predominantly rural tribal population, has witnessed a resurgence of scrub typhus cases in recent years. Various ecological factors, including rodent populations, habitat characteristics and climatic conditions, influence its prevalence. Entomological investigations have confirmed the abundance of vector mites, highlighting the importance of understanding their distribution and the probability of transmission of scrub typhus in the region. Proper diagnosis, awareness campaigns and behavioural interventions are essential for controlling scrub typhus outbreaks and reducing its impact on public health in Northeast India. Further research and community-based studies are necessary to accurately assess the disease burden and implement effective prevention strategies.


Asunto(s)
Orientia tsutsugamushi , Tifus por Ácaros , Trombiculidae , Animales , Humanos , Tifus por Ácaros/diagnóstico , Tifus por Ácaros/epidemiología , Tifus por Ácaros/microbiología , Trombiculidae/microbiología , Reservorios de Enfermedades , India/epidemiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-38279725

RESUMEN

AIMS: Leishmaniasis is a deadly tropical disease that is neglected in many countries. World Health Organization, along with a few other countries, has been working together to protect against these parasites. Many novel drugs from the past few years have been discovered and subjected against leishmaniasis, which have been effective but they are quite expensive for lower-class people. Some drugs showed no effect on the patients, and the longer use of these medicines has made resistance against these deadly parasites. Researchers have been working for better medication by using natural products from medicinal plants (oils, secondary metabolites, plant extracts) and other alternatives to find active compounds as an alternative to the current synthetic drugs. MATERIALS AND METHODS: To find more potential natural products to treat Leishmania spp, a study has been conducted and reported many plant metabolites and other natural alternatives from plants and their extracts. Selected research papers with few term words such as natural products, plant metabolites, Leishmaniasis, in vivo, in vitro, and treatment against leishmaniasis; in the Google Scholar, PubMed, and Science Direct databases with selected research papers published between 2015 and 2021 have been chosen for further analysis has been included in this report which has examined either in vivo or in vitro analysis. RESULTS: This paper reported more than 20 novel natural compounds in 20 research papers that have been identified which report a leishmanicidal activity and shows an action against promastigote, axenic, and intracellular amastigote forms. CONCLUSION: Medicinal plants, along with a few plant parts and extracts, have been reported as a possible novel anti-leishmanial medication. These medicinal plants are considered nontoxic to Host cells. Leishmaniasis treatments will draw on the isolated compounds as a source further and these compounds compete with those already offered in clinics.


Asunto(s)
Antiprotozoarios , Productos Biológicos , Leishmania , Leishmaniasis , Plantas Medicinales , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Leishmaniasis/tratamiento farmacológico , Animales , Plantas Medicinales/química , Leishmania/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
15.
Microorganisms ; 12(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276191

RESUMEN

The Totiviridae family of viruses has a unique genome consisting of double-stranded RNA with two open reading frames that encode the capsid protein (Cap) and the RNA-dependent RNA polymerase (RdRpol). Most virions in this family are isometric in shape, approximately 40 nm in diameter, and lack an envelope. There are five genera within this family, including Totivirus, Victorivirus, Giardiavirus, Leishmaniavirus, and Trichomonasvirus. While Totivirus and Victorivirus primarily infect fungi, Giardiavirus, Leishmaniavirus, and Trichomonasvirus infect diverse hosts, including protists, insects, and vertebrates. Recently, new totivirus-like species have been discovered in fish and plant hosts, and through metagenomic analysis, a novel totivirus-like virus (named Tianjin totivirus) has been isolated from bat guano. Interestingly, Tianjin totivirus causes cytopathic effects in insect cells but cannot grow in mammalian cells, suggesting that it infects insects consumed by insectivorous bats. In this study, we used next-generation sequencing and identified totivirus-like viruses in liver tissue from Molossus molossus bats in the Amazon region of Brazil. Comparative phylogenetic analysis based on the RNA-dependent RNA polymerase region revealed that the viruses identified in Molossus bats belong to two distinct phylogenetic clades, possibly comprising different genera within the Totiviridae family. Notably, the mean similarity between the Tianjin totivirus and the totiviruses identified in Molossus bats is less than 18%. These findings suggest that the diversity of totiviruses in bats is more extensive than previously recognized and highlight the potential for bats to serve as reservoirs for novel toti-like viruses.

16.
Microorganisms ; 12(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674632

RESUMEN

CRESS-DNA encompasses a broad spectrum of viruses documented across diverse organisms such as animals, plants, diatoms, fungi, and marine invertebrates. Despite this prevalence, the full extent of these viruses' impact on the environment and their respective hosts remains incompletely understood. Furthermore, an increasing number of viruses within this category lack detailed characterization. This investigation focuses on unveiling and characterizing viruses affiliated with the Genomoviridae family identified in liver samples from the bat Molossus molossus. Leveraging viral metagenomics, we identified seven sequences (MmGmV-PA) featuring a circular DNA genome housing two ORFs encoding replication-associated protein (Rep) and capsid protein (Cap). Predictions based on conserved domains typical of the Genomoviridae family were established. Phylogenetic analysis revealed the segregation of these sequences into two clades aligning with the genera Gemycirculavirus (MmGmV-06-PA and MmGmV-07-PA) and Gemykibivirus (MmGmV-01-PA, MmGmV-02-PA, MmGmV-03-PA, MmGmV-05-PA, and MmGmV-09-PA). At the species level, pairwise comparisons based on complete nucleotide sequences indicated the potential existence of three novel species. In summary, our study significantly contributes to an enhanced understanding of the diversity of Genomoviridae within bat samples, shedding light on previously undiscovered viral entities and their potential ecological implications.

17.
Pharmaceutics ; 15(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36839932

RESUMEN

Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.

18.
Antibiotics (Basel) ; 12(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36830181

RESUMEN

Antimicrobial resistance increases day by day around the world. To overcome this situation new antimicrobial agents are needed. Spices such as clove, ginger, coriander, garlic, and turmeric have the potential to fight resistant microbes. Due to their therapeutic properties, medicinal herbs and spices have been utilized as herbal medicines since antiquity. They are important sources of organic antibacterial substances that are employed in treating infectious disorders caused by pathogens such as bacteria. The main focus of the study is the bioactivity of the active ingredients present in different kinds of naturally available spices. We conducted a thorough search of PubMed, Google Scholar, and Research Gate for this review. We have read many kinds of available literature, and in this paper, we conclude that many different kinds of naturally available spices perform some form of bioactivity. After reading several papers, we found that some spices have good antimicrobial and antifungal properties, which may help in controlling the emerging antimicrobial resistance and improving human health. Spices have many phytochemicals, which show good antimicrobial and antifungal effects. This review of the literature concludes that the natural bioactivate compounds present in spices can be used as a drug to overcome antimicrobial resistance in human beings.

19.
One Health ; 16: 100477, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36593979

RESUMEN

Antimicrobial resistance (AMR) is increasing worldwide due to overuse, misuse and incomplete treatment of antibiotics. Many countries are facing the excessive issue due to the spreading of AMR not only in humans and animals, but also in water and agri-food sector. Our main aim was to perform a competitive meta-analysis of surveillance-resistant microbes and their antimicrobial superintendence in Italy and Thailand. Data have been collected from reports published for the period 2012-2021. A total of 9507 and 11,753 food samples contained 3905 (41.07%) and 3526 (30%) AMR bacteria in Italy and Thailand, respectively. In Italy, the highest microbial prevalence was ß-lactam and tetracycline, while in Thailand mostly isolates showed resistance to cephalosporin and aminoglycoside. Our findings contribute to highlighting the increment of AMR related to different microbes with tendency to become multidrug resistant.

20.
Antibiotics (Basel) ; 13(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38247576

RESUMEN

The "One Health" initiative is a critical strategy that recognizes the interconnectedness between human, animal, and environmental health in the spread and containment of infectious pathogens. With the ease of global transportation, transboundary disease outbreaks pose a significant threat to food safety and security, endangering public health and having a negative economic impact. Traditional diagnostic techniques based on genotypic and phenotypic analyses are expensive, time-consuming, and cannot be translated into point-of-care tools, hindering effective disease management and control. However, with advancements in molecular methods, biosensors, and new generation sequencing, rapid and reliable diagnostics are now available. This review provides a comprehensive insight into emergent viral and bacterial pathogens and antimicrobial resistance, highlighting the importance of "One Health" in connecting detection and effective treatment. By emphasizing the symbiotic relationship between human and animal health, this paper underscores the critical role of "One Health" initiatives in preventing and controlling infectious diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA