Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(37)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38865970

RESUMEN

We demonstrate template-assisted growth of gallium-based nanoparticle clusters on silicon substrate using a focused ion beam (FIB) nanolithography technique. The nanolithography counterpart of the technique steers a focussed 30 kV accelerated gallium ion beam on the surface of Si to create template patterns of two-dimensional dot arrays. Growth of the nanoparticles is governed by two vital steps namely implantation of gallium into the substrate via gallium beam exposure and formation of the stable nanoparticles on the surface of the substrate by subsequent annealing at elevated temperature in ammonia atmosphere. The growth primarily depends on the dose of implanted gallium which is in the order of 107atoms per spot and it is also critically influenced by the temperature and duration of the post-annealing treatment. By controlling the growth parameters, it is possible to obtain one particle per spot and particle densities as high as 109particles per square centimetre could be achieved in this case. The demonstrated growth process, utilizing the advantages of FIB nanolithography, is categorized under the guided organization approach as it combines both the classical top-down and bottom-up approaches. Patterned growth of the particles could be utilized as templates or nucleation sites for the growth of an organized array of nanostructures or quantum dot structures.

2.
Nanotechnology ; 28(46): 465703, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-28925378

RESUMEN

Implementation of Au nanoparticles (NPs) is a subject for frontier plasmonic research due to its fascinating optical properties. Herein, the present study deals with plasmonic assisted emission properties of Au NPs-vertical graphene (VG) hybrid nanostructures. The influence of effective polarizability of Au NPs on the surface enhanced Raman scattering and luminescence properties is investigated. In addition, a remarkable infra-red emission in the hybrid nanostructures is observed and interpreted on the basis of intra-band transitions in Au NPs. The flake-like nanoporous VG structure is invoked for the generation of additional confined photons to impart additional momentum and a gradient of confined excitation energy towards initiating the intra-band transitions of Au NPs. Integrating Au plasmonic materials in three-dimensional VG nanostructures enhances the light-matter interactions. The present study provides a new adaptable plasmonic assisted pathway for optoelectronic and sensing applications.

3.
J Nanosci Nanotechnol ; 14(8): 5761-73, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25936000

RESUMEN

Lithium micro batteries are emerging field of research. For environmental safety biodegradable films are preferred. Recently biodegradable polymers have gained wide application in the field of solid polymer electrolytes. To make biodegradable polymers films plasticizers are usually used. However, use of plasticizers has disadvantages such as inhomogenities in phases and mechanical instability that will affect the performance of Lithium micro batteries. We have in this research used gold nanoparticles that are environmentally friendly, instead of plasticizers. Gold nanoparticles were directly template upon chitosan membranes by reduction process so as to enhance the interactions of Lithium with the polymer. In this article, for the first time the characteristics of Chitosan-gold-Lithium nanocomposite films are investigated. The films were prepared using simple solution casting technique. We have used various characterization tools such as Small Angle Neutron Scattering (SANS), XRD, FTIR, Raman, FESEM, and AFM, Light scattering, Dielectric and electrical conductivity measurements. Our investigations show that incorporation of gold results in enhancement of conductivity in Lithium containing Chitosan films. Also it affects the dielectric characteristics of the films. We conclude through various characterization tools that the enhancement in the conductivity was due to the retardation of crystal growth of lithium salt in the presence of gold nanoparticles. A model is proposed regarding the formation of the new nanocomposite. The conductivity of these biodegradable films is comparable to those of the current inorganic Lithium micro batteries. This new chitosan-Au-Li nanocomposite has potential applications in the field of Lithium micro batteries.


Asunto(s)
Quitosano/química , Electrólitos/química , Oro/química , Litio/química , Nanocompuestos , Polímeros/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
ACS Appl Mater Interfaces ; 15(3): 4703-4712, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36637973

RESUMEN

In this paper, we reported the controlled synthesis of tungsten disulfide/reduced tungsten oxide (WS2/W18O49) heterojunctions for highly efficient room temperature NOx and ammonia (NH3) sensors. X-ray diffraction analysis revealed the formation of the oxygen-deficient W18O49 phase along with WS2. Field-emission scanning electron microscopy and transmission electron microscopy displayed the formation of WS2 flakes over W18O49 nanorods. X-ray photoelectron spectroscopy showed the presence of tungsten in W4+, W5+, and W6+ oxidation states corresponding to WS2 and W18O49, respectively. The WS2/W18O49 heterojunction sensor exhibited sub-ppm level sensitivity to NOx and NH3 at room temperature. The heterojunction sensor detected 0.6 ppm NOx and 0.5 ppm NH3, with a corresponding response of 7.1 and 3.8%, respectively. The limit of detection of the sensor was calculated to be 0.05 and 0.17 ppm for NH3 and NOx, respectively. The cyclic stability test showed that the sensor exhibited high stability even after 24 cycles for the detection of NH3 and 14 cycles for NOx. Compared to pristine WO3 and WS2, the WS2/W18O49 heterojunction showed high selectivity toward NOx and NH3. The results could be useful for the development of room temperature NOx and NH3 sensors.

5.
ACS Omega ; 2(8): 4540-4547, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457746

RESUMEN

We demonstrate controlled fabrication of porous Si (PS) and vertically aligned silicon nanowires array starting from bulk silicon wafer by simple chemical etching method, and the underlying mechanism of nanostructure formation is presented. Silicon-oxidation rate and the electron-scavenging rate from metal catalysis play a vital role in determining the morphology of Si nanostructures. The size of Ag catalyst is found to influence the Si oxidation rate. Tunable morphologies from irregular porous to regular nanowire structure could be tailored by controlling the size of Ag nanoparticles and H2O2 concentration. Ag nanoparticles of size around 30 nm resulted in irregular porous structures, whereas discontinuous Ag film yielded nanowire structures. The depth of the porous Si structures and the aspect ratio of Si nanowires depend on H2O2 concentration. For a fixed etching time, the depth of the porous structures increases on increasing the H2O2 concentration. By varying the H2O2 concentration, the surface porosity and aspect ratio of the nanowires were controlled. Controlling the Ag catalyst size critically affects the morphology of the etched Si nanostructures. H2O2 concentration decides the degree of porosity of porous silicon, dimensions and surface porosity of silicon nanowires, and etch depth. The mechanisms of the size- and H2O2-concentration-dependent dissociation of Ag and the formation of porous silicon and silicon nanowire are described in detail.

6.
Sci Rep ; 7(1): 3251, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28607353

RESUMEN

Tailoring the surface properties by varying the chemistry and roughness could be of interest for self-cleaning applications. We demonstrate the transformation of hydrophobic ZnO Nano rod (NR) array into superhydrophobic nature by changing the local chemical state and without altering the surface roughness by swift heavy ion (SHI) irradiation. The aligned ZnO NR arrays were irradiated using 150 MeV Ag ions with different fluences from 5E10 to 3E12 ions/cm2. The observed static water contact angles of ZnO NRs samples were 103° ± 3°, 152° ± 4°,161° ± 3°, 164° ± 2°, 167° ± 2°,154 ± 3° and 151° ± 2° for the pristine, ion fluencies of 1E11, 3E11, 5E11, 7E11, 1E12 and 3E12 ions cm-2, respectively. The change in local surface chemistry via formation of surface oxygen related defects due to electronic excitations induced by ion irradiation determine the water dewetting properties. It is found that surface oxygen related defects could be tuned by varying the fluence of the SHIs. Durability tests show that the SHI induced surface oxygen-deficient ZnO NRs have the stable superhydrophobic behavior for more than a year.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA