RESUMEN
The superconformal index of half-BPS states in N=4 supersymmetric Yang-Mills with gauge group U(N) admits an expansion in terms of giant gravitons, I_{N}(q)=I_{∞}(q)∑_{m=0}^{∞}q^{mN}I[over ^]_{m}(q), where m is the number of giant gravitons and I_{∞}(q) is the graviton index. The expansion can be viewed as the implementation of trace relations for finite N. We derive this expansion directly in supergravity from the class of half-BPS solutions due to Lin, Lunin, and Maldacena in type IIB supergravity. The moduli space of these configurations can be quantized using covariant quantization methods. We show how this quantization leads to the precise expression for the expansion in terms of giant gravitons. Our proposal provides a derivation of the giant graviton expansion directly in terms of quantized supergravity degrees of freedom, and it recovers discrete data via quantum geometries that are classically nonsmooth.
RESUMEN
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS_{4} black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
RESUMEN
We study black hole formation during the gravitational collapse of a massless scalar field in asymptotically D-dimensional anti-de Sitter AdS(D) spacetimes for D = 4, 5. We conclude that spherically symmetric gravitational collapse in asymptotically AdS spaces is turbulent and characterized by a Kolmogorov-Zakharov spectrum. Namely, we find that after an initial period of weakly nonlinear evolution, there is a regime where the power spectrum of the Ricci scalar evolves as ω(-s) with the frequency, ω, and s ≈ 1.7 ± 0.1.
RESUMEN
We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.