Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Phys ; 48(1): 59-67, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342604

RESUMEN

Objective: The aim of this study is to implement a new treatment technique in total body irradiation (TBI) using the manual field-in-field-TBI (MFIF-TBI) technique and dosimetrically verifying its results with respect to compensator-based TBI (CB-TBI) and open field TBI technique. Materials and Methods: A rice flour phantom (RFP) was placed on TBI couch with knee bent position at 385 cm source to surface distance. Midplane depth (MPD) was calculated for skull, umbilicus, and calf regions by measuring separations. Three subfields were opened manually for different regions using the multi-leaf collimator and jaws. The treatment Monitor unit (MU) was calculated based on each subfield size. In the CB-TBI technique, Perspex was used as a compensator. Treatment MU was calculated using MPD of umbilicus region and the required compensator thickness was calculated. For open field TBI, treatment MU was calculated using MPD of umbilicus region, and the treatment was executed without placing compensator. The diodes were placed on the surface of RFP to measure the delivered dose and the results were compared. Results: The MFIF-TBI results showed that the deviation was within ± 3.0% for the different regions, except for the neck for which the deviation was 8.72%. In the CB-TBI delivery, the dose deviation was ± 3.0% for different regions in the RFP. The open field TBI results showed that the dose deviation was not within the limit ± 10.0%. Conclusion: The MFIF-TBI technique can be implemented for TBI treatment as no TPS is required, and laborious process of making a compensator can be avoided while ensuring that the dose uniformity in all the regions within the tolerance limit.

2.
J Med Phys ; 47(2): 173-180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212207

RESUMEN

Purpose: The aim of the current study is to commission compensator-based total body irradiation (TBI) and to compare surface dose using percentage depth dose (PDD) while varying the distance between beam spoiler and phantom surface. Materials and Methods: TBI commissioning was performed on Elekta Synergy® Platform linear accelerator for bilateral extended source to surface distance treatment technique. The PDD was measured by varying the distance (10 cm, 20 cm, 30 cm, and 40 cm) between the beam spoiler and the phantom surface. Beam profile and half-value layer (HVL) measurement were carried out using the FC65 ion-chamber. Quality assurance (QA) was performed using an in-house rice-flour phantom (RFP). In-vivo diodes (IVD) were placed on the RFP at various regions to measure the delivered dose, and it was compared to the calculated dose. Results: An increase in Dmax and surface dose was observed when beam spoiler was moved away from the phantom surface. The flatness and symmetry of the beam profile were calculated. The HVL of Perspex and aluminum is 17 cm and 8 cm, respectively. The calculated dose of each region was compared to the measured dose on the RFP with IVD, and the findings showed that the variation was <4.7% for both Perspex and Aluminum compensators. Conclusion: The commissioning of the compensator-based TBI technique was performed and its QA measurements were carried out. The Mayneord factor corrected PDD and measured PDD values were compared. The results are well within the clinical tolerance limit. This study concludes that 10 cm -20 cm is the optimal distance from the beam spoiler to phantom surface to achieve prescribed dose to the skin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA