RESUMEN
A hydrothermal method was used to synthesize two highly stable Zn(II) metal-organic frameworks (MOFs), namely, [Zn2(L)2(HIPA)]n (1) and [Zn9(L)6(BTEC)3(H2O)4·6H2O]n (2) (HL = 3-amino-1H-1,2,4-triazole, H2HIPA = 5-hydroxyisophthalic acid, H4BTEC = benzene-1,2,4,5-tetracarboxylic acid). The physicochemical properties of 1 and 2 were characterized using a range of analytical techniques. The scanning electron microscopy images confirmed the stability of the MOFs under heating at 120 °C for 12 h. Following their preparation, the two MOFs were used as catalysts in the grafting of poly(ε-caprolactone) on wood nanofibers (WNFs) by means of a homogeneous ring-opening polymerization protocol in an ionic liquid. The grafting ratio achieved using catalyst 1 was higher than that achieved for catalyst 2, wherein a maximum of 92.43% was obtained using the former. Under comparable reaction conditions, the grafting ratio of 1 was found to be significantly higher than those achieved using 4-dimethylamino pyridine, Sn(Oct)2, and UiO-67 catalysts. In addition, fluorescence emission was detected from the residual catalysts present in the products. The calculated electrostatic potentials and average local ionization energies indicated that the grafting of ε-caprolactone on the WNFs follows a "coordination-insertion" mechanism. Overall, these two new and efficient MOF catalysts have the potential to replace highly toxic traditional catalysts in polymerization reactions. The grafted cellulose material with fluorescence emission may also be suitable for use in biomedical applications.
RESUMEN
A novel zero-dimensional dinuclear zinc complex, di-µ-acetato-1:2κ4O:O'-(µ-2-acetyl-6-{[(Z)-2-bromo-3-oxoprop-1-en-1-yl]azanidyl}phenolato-1κ2O1,O2:2κ3O1,N,O6)(N,N-dimethylacetamide-1κO)dizinc(II), [Zn2(C11H8BrNO3)(CH3COO)2(C4H9NO)] or [Zn2(L)(CH3COO)2(DMA)], 1, was synthesized using (Z)-3-[(3-acetyl-2-hydroxyphenyl)amino]-2-bromoprop-2-enal (H2L), which was synthesized from 1-(3-amino-2-hydroxyphenyl)ethanone and 2-bromomalonaldehyde. H2L and 1 were characterized by single-crystal X-ray diffraction, FT-IR spectroscopy and elemental analysis. Theoretical calculations of the bond orders and excited state of H2L confirmed that there is extensive electron delocalization in the H2L molecules. Single-crystal X-ray diffraction shows that the two Zn atoms are pentacoordinated in distorted trigonal bipyramidal configurations in the crystals of 1. The thermogravimetric analysis of 1 shows that the main frame of the complex remains stable to about 190â °C. Powder X-ray diffraction (PXRD) analysis shows that 1 possesses high purity and acid and alkali resistance. The intermolecular interactions of H2L and 1 were analyzed using Hirshfeld surface analysis and the results indicate that the H...H and O...H interactions of H2L and 1 play a considerable role in stabilizing the self-assembly process.