Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant Cell ; 35(5): 1408-1428, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36748200

RESUMEN

Banana (Musa acuminata) fruits ripening at 30 °C or above fail to develop yellow peels; this phenomenon, called green ripening, greatly reduces their marketability. The regulatory mechanism underpinning high temperature-induced green ripening remains unknown. Here we decoded a transcriptional and post-translational regulatory module that causes green ripening in banana. Banana fruits ripening at 30 °C showed greatly reduced expression of 5 chlorophyll catabolic genes (CCGs), MaNYC1 (NONYELLOW COLORING 1), MaPPH (PHEOPHYTINASE), MaTIC55 (TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 55), MaSGR1 (STAY-GREEN 1), and MaSGR2 (STAY-GREEN 2), compared to those ripening at 20 °C. We identified a MYB transcription factor, MaMYB60, that activated the expression of all 5 CCGs by directly binding to their promoters during banana ripening at 20 °C, while showing a weaker activation at 30 °C. At high temperatures, MaMYB60 was degraded. We discovered a RING-type E3 ligase MaBAH1 (benzoic acid hypersensitive 1) that ubiquitinated MaMYB60 during green ripening and targeted it for proteasomal degradation. MaBAH1 thus facilitated MaMYB60 degradation and attenuated MaMYB60-induced transactivation of CCGs and chlorophyll degradation. By contrast, MaMYB60 upregulation increased CCG expression, accelerated chlorophyll degradation, and mitigated green ripening. Collectively, our findings unravel a dynamic, temperature-responsive MaBAH1-MaMYB60-CCG module that regulates chlorophyll catabolism, and the molecular mechanism underpinning green ripening in banana. This study also advances our understanding of plant responses to high-temperature stress.


Asunto(s)
Musa , Temperatura , Musa/genética , Musa/química , Musa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
2.
Plant Cell Physiol ; 65(1): 49-67, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37767757

RESUMEN

As zinc finger protein transcription factors (TFs), the molecular mechanism of Cys-Cys-Cys-His (CCCH) TFs in regulating plant development, growth and stress response has been well studied. However, the roles of CCCH TFs in fruit ripening are still obscure. Herein, we report that MaCCCH33-like2 TF and its associated proteins modulate the fruit softening of 'Fenjiao' bananas. MaCCCH33-like2 interacts directly with the promoters of three genes: isoamylase2 (MaISA2), sugar transporter14-like (MaSUR14-like) and ß-d-xylosidase23 (MaXYL23), all of which are responsible for encoding proteins involved in the degradation of starch and cell wall components. Additionally, MaCCCH33-like2 forms interactions with abscisic acid-insensitive 5 (ABI5)-like and ethylene F-box protein 1 (MaEBF1), resulting in enhanced binding and activation of promoters of genes related to starch and cell wall degradation. When MaCCCH33-like2 is transiently and ectopically overexpressed in 'Fenjiao' banana and tomato fruit, it facilitates softening and ripening processes by promoting the degradation of cell wall components and starch and the production of ethylene. Conversely, the temporary silencing of MaCCCH33-like2 using virus-induced gene silencing (VIGS) inhibits softening and ripening in the 'Fenjiao' banana by suppressing ethylene synthesis, as well as starch and cell wall degradation. Furthermore, the promoter activity of MaCCCH33-like2 is regulated by MaABI5-like. Taken together, we have uncovered a novel MaCCCH33-like2/MaEBF1/MaABI5-like module that participates in fruit softening regulation in bananas.


Asunto(s)
Musa , Almidón , Almidón/metabolismo , Musa/genética , Musa/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Dedos de Zinc , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Physiol ; 188(2): 1312-1334, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791491

RESUMEN

Cold stress adversely affects plant production, both qualitatively and quantitatively. Banana (Musa acuminata) is sensitive to cold stress and suffers chilling injury (CI) when stored under 11°C, causing abnormal fruit softening. However, the mechanism underlying the abnormal fruit softening due to CI remains obscure. This study uncovered the coordinated transcriptional mechanism of ethylene F-box (EBF1) protein and abscisic acid-insensitive 5 (ABI5)-like protein in regulating chilling-induced softening disorders of Fenjiao banana. Cold stress severely inhibited the transcript and protein levels of EBF1, ABI5-like, and fruit softening-related genes. The ABI5-like protein bound to the promoters of key starch and cell wall degradation-related genes such as ß-amylase 8 (BAM8), pectate lyase 8 (PL8), and ß-D-xylosidase23-like (XYL23-like) and activated their activities. EBF1 physically interacted with ABI5-like and enhanced the transcriptional activity of the key starch and cell wall degradation-related genes but did not ubiquitinate or degrade ABI5-like protein. This promoted fruit ripening and ameliorated fruit CI in a manner similar to the effect of exogenous abscisic acid treatment. The ectopic and transient overexpression of EBF1 and ABI5-like genes in tomato (Solanum lycopersicum) and Fenjiao banana accelerated fruit ripening and softening by promoting ethylene production, starch and cell wall degradation, and decreasing fruit firmness. EBF1 interacted with EIL4 but did not ubiquitinate or degrade EIL4, which is inconsistent with the typical role of EBF1/2 in Arabidopsis (Arabidopsis thaliana). These results collectively highlight that the interaction of EBF1 and ABI5-like controls starch and cell wall metabolism in banana, which is strongly inhibited by chilling stress, leading to fruit softening and ripening disorder.


Asunto(s)
Ácido Abscísico/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Proteínas F-Box/metabolismo , Frutas/genética , Frutas/metabolismo , Musa/genética , Musa/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Factores de Transcripción
4.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233017

RESUMEN

Recent studies have confirmed that chlorophyllase (CLH), a long-found chlorophyll (Chl) dephytylation enzyme for initiating Chl catabolism, has no function in leaf senescence-related Chl breakdown. Yet, CLH is considered to be involved in fruit degreening and responds to external and hormonal stimuli. The purpose of this work was to elucidate in detail the biochemical, structural properties, and gene expression of four CLHs from the Solanum lycopersicum genome so as to understand the roles of Solanum lycopersicum chlorophyllases (SlCLHs). SlCLH1/4 were the predominantly expressed CLH genes during leaf and fruit development/ripening stages, and SlCLH1 in mature green fruit was modulated by light. SlCLH1/2/3/4 contained a highly conserved GHSXG lipase motif and a Ser-Asp-His catalytic triad. We identified Ser159, Asp226, and His258 as the essential catalytic triad by site-directed mutagenesis in recombinant SlCLH1. Kinetic analysis of the recombinant enzymes revealed that SlCLH1 had high hydrolysis activities against Chl a, Chl b, and pheophytin a (Phein a), but preferred Chl a and Chl b over Phein a; SlCLH2/3 only showed very low activity to Chl a and Chl b, while SlCLH4 showed no Chl dephytylation activity. The recombinant SlCLH1/2/3 had different pH stability and temperature optimum. Removal of the predicted N-terminal processing peptide caused a partial loss of activity in recombinant SlCLH1/2 but did not compromise SlCLH3 activity. These different characteristics among SlCLHs imply that they may have different physiological functions in tomato.


Asunto(s)
Solanum lycopersicum , Hidrolasas de Éster Carboxílico , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Cinética , Lipasa/metabolismo , Solanum lycopersicum/metabolismo
5.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613975

RESUMEN

The fruit of Litchi chinensis contains high levels of proanthocyanidins (PAs) in the pericarp. These substances can serve as substrates of laccase-mediated rapid pericarp browning after the fruit is harvested. In this study, we found that the major PAs in litchi pericarp were (-)-epicatechin (EC) and several procyanidins (PCs), primarily PC A2, B2, and B1, and the EC and the PC content decreased with the development of the fruit. RNA-seq analysis showed that 43 early and late structure genes related to flavonoid/PA biosynthesis were expressed in the pericarp, including five ANTHOCYANIDIN REDUCTASE (ANR), two LEUCOANTHOCYANIDIN REDUCTASE (LAR), and two ANTHOCYANIDIN SYNTHASE (ANS) genes functioning in the PA biosynthesis branch of the flavonoid pathway. Among these nine PA biosynthesis-related genes, ANR1a, LAR1/2, and ANS1 were highly positively correlated with changes in the EC/PC content, suggesting that they are the key PA biosynthesis-related genes. Several transcription factor (TF) genes, including MYB, bHLH, WRKY, and AP2 family members, were found to be highly correlated with ANR1a, LAR1/2, and ANS1, and their relevant binding elements were detected in the promoters of these target genes, strongly suggesting that these TF genes may play regulatory roles in PA biosynthesis. In summary, this study identified the candidate key structure and regulatory genes in PA biosynthesis in litchi pericarp, which will assist in understanding the accumulation of high levels of browning-related PA substances in the pericarp.


Asunto(s)
Litchi , Proantocianidinas , Frutas/metabolismo , Proantocianidinas/metabolismo , Litchi/química , Transcriptoma , Flavonoides/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Plant J ; 104(5): 1251-1268, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32989852

RESUMEN

Ethylene signaling appears critical for grape bud dormancy release. We therefore focused on identification and characterization of potential downstream targets and events, assuming that they participate in the regulation of dormancy release. Because ethylene responding factors (ERF) are natural candidates for targets of ethylene signaling, we initially characterized the behavior of two VvERF-VIIs, which we identified within a gene set induced by dormancy release stimuli. As expected, these VvERF-VIIs are localized within the nucleus, and are stabilized upon decreases in oxygen availability within the dormant buds. Less expected, the proteins are also stabilized upon hydrogen cyanamide (HC) application under normoxic conditions, and their levels peak at deepest dormancy under vineyard conditions. We proceeded to catalog the response of all bud-expressed ERFs, and identified additional ERFs that respond similarly to ethylene, HC, azide and hypoxia. We also identified a core set of genes that are similarly affected by treatment with ethylene and with various dormancy release stimuli. Interestingly, the functional annotations of this core set center around response to energy crisis and renewal of energy resources via autophagy-mediated catabolism. Because ERF-VIIs are stabilized under energy shortage and reshape cell metabolism to allow energy regeneration, we propose that: (i) the availability of VvERF-VIIs is a consequence of an energy crisis within the bud; (ii) VvERF-VIIs function as part of an energy-regenerating mechanism, which activates anaerobic metabolism and autophagy-mediated macromolecule catabolism; and (iii) activation of catabolism serves as the mandatory switch and the driving force for activation of the growth-inhibited meristem during bud-break.


Asunto(s)
Etilenos/metabolismo , Latencia en las Plantas/fisiología , Proteínas de Plantas/genética , Vitis/fisiología , Cianamida/farmacología , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Hipoxia/metabolismo , Latencia en las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estabilidad Proteica , Estaciones del Año , Transducción de Señal , Azida Sódica/farmacología , Nicotiana/genética , Vitis/efectos de los fármacos
7.
BMC Plant Biol ; 19(1): 315, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307378

RESUMEN

BACKGROUND: Abaxially anthocyanic leaves of deeply-shaded understorey plants play important ecological significance for the environmental adaption. In contrast to the transient pigmentation in other plants, anthocyanins are permanently presented in these abaxially red leaves, however, the mechanism for the pigment maintenance remains unclear. In the present study, we investigated phenolic metabolites that may affect pigment stability and degradation in Excoecaria cochinchinensis (a bush of permanently abaxial-red leaves), via a comparison with Osmanthus fragrans (a bush of transiently red leaves). RESULTS: High levels of galloylated anthocyanins were identified in the Excoecaria but not in the Osmanthus plants. The galloylated anthocyanin showed slightly higher stability than two non-galloylated anthocyanins, while all the 3 pigments were rapidly degraded by peroxidase (POD) in vitro. High levels of hydrolysable tannins [mainly galloylglucoses/ellagitannins (GGs/ETs)] were identified in Excoecaria but none in Osmanthus. GGs/ETs showed inhibition effect on POD, with IC50 ranged from 35.55 to 83.27 µM, correlated to the markedly lower POD activities detected in Excoecaria than in Osmanthus. Strong copigmentation was observed for GGs/ETs and anthocyanins, with more than 30% increase in the red intensity of non-galloylated anthocyanin solutions. In the leaf tissue, the hydrolysable tannins were observed to be co-localized with anthocyanins at the abaxial layer of the Excoecaria leaves, correlated to the low POD activity, more acidity and increased red intensity of the tissue. CONCLUSION: The results suggest that the Excoecaria leaves accumulate a distinct group of phenolic metabolites, mainly GGs/ETs, at the abaxial layer, which prevent anthocyanin degradation and increase the pigment stability, and consequently lead to the permanent maintenance of the red leaves.


Asunto(s)
Antocianinas/metabolismo , Euphorbiaceae/metabolismo , Taninos Hidrolizables/metabolismo , Peroxidasa/antagonistas & inhibidores , Pigmentación , Hojas de la Planta/metabolismo , Euphorbiaceae/enzimología , Oleaceae/metabolismo , Peroxidasa/metabolismo , Hojas de la Planta/crecimiento & desarrollo
8.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901821

RESUMEN

Brunfelsia calycina flowers lose anthocyanins rapidly and are therefore well suited for the study of anthocyanin degradation mechanisms, which are unclear in planta. Here, we isolated an anthocyanin-ß-glycosidase from B. calycina petals. The MS/MS (Mass Spectrometry) peptide sequencing showed that the enzyme (72 kDa) was a ß-xylosidase (BcXyl). The enzyme showed high activity to p-Nitrophenyl-ß-d-galactopyranoside (pNPGa) and p-Nitrophenyl-ß-d-xylopyranoside (pNPX), while no activity to p-Nitrophenyl-ß-d-glucopyranoside (pNPG) or p-Nitrophenyl-ß-D-mannopyranoside (pNPM) was seen. The optimum temperature of BcXyl was 40 °C and the optimum pH was 5.0. The enzyme was strongly inhibited by 1 mM D-gluconate and Ag⁺. HPLC (High Performance Liquid Chromatography) analysis showed that BcXyl catalyzed the degradation of an anthocyanin component of B. calycina, and the release of xylose and galactose due to hydrolysis of glycosidic bonds by BcXyl was detected by GC (Gas Chromatography) /MS. A full-length mRNA sequence (2358 bp) of BcXyl (NCBI No. MK411219) was obtained and the deduced protein sequence shared conserved domains with two anthocyanin-ß-glycosidases (Bgln and BadGluc, characterized in fungi). BcXyl, Bgln and BadGluc belong to AB subfamily of Glycoside hydrolase family 3. Similar to BcPrx01, an anthocyanin-degradation-related Peroxidase (POD), BcXyl was dramatically activated at the stage at which the rapid anthocyanin degradation occurred. Taken together, we suggest that BcXyl may be the first anthocyanin-ß-glycosidase identified in higher plants.


Asunto(s)
Antocianinas/metabolismo , Flores/enzimología , Glicósido Hidrolasas/metabolismo , Solanaceae/enzimología , Xilosidasas/aislamiento & purificación , Xilosidasas/metabolismo , Secuencia de Aminoácidos , Activación Enzimática , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Glicósido Hidrolasas/química , Filogenia , Desarrollo de la Planta/genética , Solanaceae/clasificación , Solanaceae/genética , Xilosidasas/química
9.
Plant Mol Biol ; 98(6): 507-523, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30392158

RESUMEN

KEY MESSAGE: Transient increases in ethylene biosynthesis, achieved by tight regulation of transcription of specific ACC oxidase and ACC synthase genes, play a role in activation of grapevine bud dormancy release. The molecular mechanisms regulating dormancy release in grapevine buds are as yet unclear. It has been hypothesized that its core involves perturbation of respiration which induces an interplay between ethylene and ABA metabolism that removes repression and allows regrowth. Roles for hypoxia and ABA metabolism in this process have been previously supported. The potential involvement of ethylene biosynthesis in regulation of dormancy release, which has received little attention so far, is now explored. Our results indicate that (1) ethylene biosynthesis is induced by hydrogen cyanamide (HC) and azide (AZ), known artificial stimuli of dormancy release, (2) inhibitors of ethylene biosynthesis and signalling antagonize dormancy release by HC/AZ treatments, (3) ethylene application induces dormancy release, (4) there are two sets of bud-expressed ethylene biosynthesis genes which are differentially regulated, (5) only one set is transiently upregulated by HC/AZ and during the natural dormancy cycle, concomitant with changes in ethylene levels, and (6) levels of ACC oxidase transcripts and ethylene sharply decrease during natural dormancy release, whereas ACC accumulates. Given these results, we propose that transient increases in ethylene biosynthesis prior to dormancy release, achieved primarily by regulation of transcription of specific ACC oxidase genes, play a role in activation of dormancy release.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Etilenos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Liasas/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Vitis/enzimología , Aminoácido Oxidorreductasas/genética , Liasas/genética , Latencia en las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/fisiología
10.
Int J Mol Sci ; 19(1)2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29351247

RESUMEN

Litchi (Litchi chinensis Sonn.) fruit is known for its rich source of phenolics. Litchi pericarp contains high levels of epicatechin that may form oligomers of various lengths. Except for several A or B type epicatechin dimers, other soluble oligomers have rarely been identified in the pericarp. Here, bioassay-guided column fractionation was applied to isolate bioactive phenolics from aqueous pericarp extract. A fraction (S3) was obtained by two rounds of Sephadex LH-20 column chromatography, and showed higher antioxidant activity and inhibition on the proliferation of human lung cancer cells (A549) than Litchi anthocyanins. S3 was further separated to isolate fractions P1-P4, which all showed higher antioxidant activity than vitamin C. P3 showed 32.9% inhibition on A549 cells at 30 µg/mL, higher than other fractions and cis-Dichlorodiamineplatinum (DDP, 0.5 µg/mL), but not as high as the combination of the four fractions. Using HPLC-Q-TOF-MS/MS, one B-type and complex A/B type epicatechin trimers were identified in P3; another B-type and two A/B-type trimers were identified in P4. P1 and P2, containing epicatechin and proanthocyanidin B2, respectively, showed no cell inhibition at 30 µg/mL. It is the first time that the two B type trimers of epicatechins (Litchitannin B1 and B2), have been found in Litchi species. The identified proanthocyanidins were detected in the pericarp of the young fruit, and the levels of the compounds decreased as the fruit developed, correlating to the decreasing patterns of the expression of LcLAR and LcANR, two key genes in the catechin biosynthesis pathway.


Asunto(s)
Antioxidantes/química , Catequina/química , Litchi/química , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Catequina/aislamiento & purificación , Catequina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fenoles , Extractos Vegetales/química , Espectrometría de Masas en Tándem
11.
Int J Mol Sci ; 18(4)2017 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-28346355

RESUMEN

Anthocyanin degradation decreases ornamental or nutritional values of horticultural products. To investigate factors that may influence colour change in flower development, anthocyanin degradation was compared between the flowers of Brunfelsia calycina and Rosa chinensis, which show rapid and slow degradation, respectively. In-gel activity assays, high performance liquid chromatography (HPLC) analysis of tannins, enzyme kinetics measurement and immune-detection of anthocyanin degradation related-perioxidases (PODs) were carried out for the comparison. Rose petals possessed significantly lower anthocyanin degradation-related POD activities than Brunfelsia petals, which may be related to the high tannin contents. Epicatechin gallate (ECG) and gallocatechin gallate (GCG) were detected in rose as 161.3 ± 12.34 and 273.56 ± 41.23 µg/g FW (Fresh Weight) respectively, while not detected in Brunfelsia. ECG and GCG inhibited the activities of the Brunfelsia POD with half maximal inhibitory concentrations (IC50s) as 21.5 and 29.7 µM respectively, and increased the colour intensities of the anthocyanins. Catechin and epicatechin did not inhibit the POD activity, while serving as POD substrates, with Km (the Michaelis constant) as 0.48 and 1.23 mM. Similar protein levels of the anthocyanin degradation-related 40-kDa PODs were detected in Brunfelsia and rose. In summary, high amount of tannins, particularly ECG and GCG, in red rose petals may inhibit the degradation-related enzymes, leading to the maintenance of anthocyanins in vivo.


Asunto(s)
Antocianinas/metabolismo , Catequina/análogos & derivados , Rosa/metabolismo , Solanaceae/metabolismo , Catequina/metabolismo , Flores/metabolismo , Peroxidasas/metabolismo , Proteínas de Plantas/metabolismo , Especificidad de la Especie
12.
Plant Physiol ; 169(4): 2391-408, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26514808

RESUMEN

In contrast to the detailed molecular knowledge available on anthocyanin synthesis, little is known about its catabolism in plants. Litchi (Litchi chinensis) fruit lose their attractive red color soon after harvest. The mechanism leading to quick degradation of anthocyanins in the pericarp is not well understood. An anthocyanin degradation enzyme (ADE) was purified to homogeneity by sequential column chromatography, using partially purified anthocyanins from litchi pericarp as a substrate. The purified ADE, of 116 kD by urea SDS-PAGE, was identified as a laccase (ADE/LAC). The full-length complementary DNA encoding ADE/LAC was obtained, and a polyclonal antibody raised against a deduced peptide of the gene recognized the ADE protein. The anthocyanin degradation function of the gene was confirmed by its transient expression in tobacco (Nicotiana benthamiana) leaves. The highest ADE/LAC transcript abundance was in the pericarp in comparison with other tissues, and was about 1,000-fold higher than the polyphenol oxidase gene in the pericarp. Epicatechin was found to be the favorable substrate for the ADE/LAC. The dependence of anthocyanin degradation by the enzyme on the presence of epicatechin suggests an ADE/LAC epicatechin-coupled oxidation model. This model was supported by a dramatic decrease in epicatechin content in the pericarp parallel to anthocyanin degradation. Immunogold labeling transmission electron microscopy suggested that ADE/LAC is located mainly in the vacuole, with essential phenolic substances. ADE/LAC vacuolar localization, high expression levels in the pericarp, and high epicatechin-dependent anthocyanin degradation support its central role in pigment breakdown during pericarp browning.


Asunto(s)
Antocianinas/metabolismo , Catequina/metabolismo , Frutas/enzimología , Lacasa/metabolismo , Litchi/enzimología , Catecol Oxidasa/metabolismo , Frutas/citología , Frutas/genética , Frutas/fisiología , Lacasa/genética , Litchi/citología , Litchi/genética , Litchi/fisiología , Modelos Moleculares , Oxidación-Reducción , Fenoles/metabolismo , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/fisiología
13.
Foods ; 13(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38472927

RESUMEN

Pericarp browning is the key factor for the extension of shelf life and the maintenance of the commercial value of harvested litchi fruit. Water loss is considered a leading factor of pericarp browning in litchi fruit. In this study, based on the distinct structure of litchi fruit, which is a special type of dry fruit with the aril as the edible part, the effects of water supply via pedicel (WSP) treatment on pericarp browning and the fruit quality of litchi were investigated. Compared with the packaging of the control fruit at 25 °C or 4 °C, the WSP treatment was found to significantly reduce pericarp browning and the decay of litchi fruit. The WSP-treated fruit had a higher L* value, total anthocyanin content, and pericarp water content, and the pericarp was thicker. The WSP treatment significantly suppressed the increase in the electrolyte leakage of the pericarp and maintained higher ascorbic acid (AA) contents in the aril. In addition, the WSP treatment was effective in reducing the activity and gene expression of browning-related genes Laccase (ADE/LAC) and Peroxidase (POD) during the storage period. In conclusion, the WSP treatment could be an effective method to delay pericarp browning and maintain the quality of harvested litchi fruit, and this further supports that litchi fruit has dry fruit characteristics.

14.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111833

RESUMEN

The projected rise in global ambient temperature by 3-5 °C by the end of this century, along with unpredicted heat waves during critical crop growth stages, can drastically reduce grain yield and will pose a great food security challenge. It is therefore important to identify wheat genetic resources able to withstand high temperatures, discover genes underpinning resilience to higher temperatures, and deploy such genetic resources in wheat breeding to develop heat-tolerant cultivars. In this study, 180 accessions of synthetic hexaploid wheats (SHWs) were evaluated under normal and late wheat growing seasons (to expose them to higher temperatures) at three locations (Islamabad, Bahawalpur, and Tando Jam), and data were collected on 11 morphological and yield-related traits. The diversity panel was genotyped with a 50 K SNP array to conduct genome-wide association studies (GWASs) for heat tolerance in SHW. A known heat-tolerance locus, TaHST1, was profiled to identify different haplotypes of this locus in SHWs and their association with grain yield and related traits in SHWs. There was a 36% decrease in grain yield (GY), a 23% decrease in thousand-grain weight (TKW), and an 18% decrease in grains per spike (GpS) across three locations in the population due to the heat stress conditions. GWASs identified 143 quantitative trait nucleotides (QTNs) distributed over all 21 chromosomes in the SHWs. Out of these, 52 QTNs were associated with morphological and yield-related traits under heat stress, while 15 of them were pleiotropically associated with multiple traits. The heat shock protein (HSP) framework of the wheat genome was then aligned with the QTNs identified in this study. Seventeen QTNs were in proximity to HSPs on chr2B, chr3D, chr5A, chr5B, chr6D, and chr7D. It is likely that QTNs on the D genome and those in proximity to HSPs may carry novel alleles for heat-tolerance genes. The analysis of TaHST1 indicated that 15 haplotypes were present in the SHWs for this locus, while hap1 showed the highest frequency of 25% (33 SHWs). These haplotypes were significantly associated with yield-related traits in the SHWs. New alleles associated with yield-related traits in SHWs could be an excellent reservoir for breeding deployment.

15.
Planta ; 235(1): 181-92, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21863250

RESUMEN

Grapevine bud fruitfulness is determined by the differentiation of uncommitted meristem (UCM) into either tendril or inflorescence. Since tendril and inflorescence differentiation have long been considered sequential steps in inflorescence development, factors that control the progression of floral meristem development may regulate the final outcome of UCM differentiation, and thus affect fruitfulness. A comparison of the expression profiles of the master regulators of floral meristem identity (FMI) during development of fruitful and non-fruitful buds along the same cane allowed associating the expression of a homolog of terminal flower 1 (TFL1, a negative regulator of FMI) to fruitful buds, and the expression of positive FMI regulators to non-fruitful buds. Combined with (a) cytokinin-induced upregulation of VvTFL1A expression in cultured tendrils, which accompanied cytokinin-derived tendril transformation into branched, inflorescence-like structures, (b) positive regulation of VvTFL1A expression by cytokinin, which was demonstrated in transgenic embryonic culture expressing GUS reporter under the control of VvTFL1A promoter, and (c) a significantly higher level of active cytokinins in fruitful positions, the data may support the assumption of cytokinin-regulated VvTFL1A activity's involvement in the control of inflorescence development. Such activity may delay acquisition of FMI and allow an extended branching period for the UCM, resulting in the differentiation of inflorescence primordia.


Asunto(s)
Citocininas/metabolismo , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Citocininas/aislamiento & purificación , Citocininas/farmacología , Flores/efectos de los fármacos , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Ingeniería Genética , Israel , Meristema/efectos de los fármacos , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Vitis/efectos de los fármacos , Vitis/genética
16.
J Sci Food Agric ; 92(13): 2624-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22495636

RESUMEN

BACKGROUND: To understand the mechanisms leading to the enhanced chilling resistance of banana by hot-water dipping (HWD, 52 °C for 3 min), we investigated the effect of a 0.5-24 h delay between HWD and cold storage on chilling resistance and the change related to the metabolism of reactive oxygen species (ROS). RESULTS: The HWD-treated fruit with a delay of less than 6 h exhibited markedly less chilling injury than the non-heated control fruit, while a delay more than 6 h resulted in significant loss in chilling resistance. Increased hydrogen peroxide content and rate of superoxide radical production were detected in the fruit at 0.5-1.5 h after HWD treatment, and the levels declined with a longer delay, which may be correlated with the enhanced gene expression levels of the gene coding for a ROS-generating related enzyme, NADPH oxidase (MaNOX). Enhanced activities and gene expression of an ascorbate peroxidase (MaAPX) were recorded in the fruit at 1.5-6 h after the treatment, and after 6 h the ascorbate peroxidase levels decayed to the levels as the control fruit. The higher APX gene expression was maintained in the treated fruit with a 3 h delay during the subsequent cold storage at 7 °C, correlating with the enhanced chilling resistance. CONCLUSION: The HWD-treated fruit left at ambient temperature up to 6 h prior to cold storage maintained the effect of heat treatment and transiently increased ROS content, and the ascorbate peroxidase activity that occurred 0.5-6 h after the treatment may be correlated with the elevated chilling resistance induced by HWD treatment.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Frío , Frutas/metabolismo , Calor , Musa/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ascorbato Peroxidasas/genética , Conservación de Alimentos/métodos , Almacenamiento de Alimentos/métodos , Frutas/enzimología , Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Musa/enzimología , Musa/genética , NADPH Oxidasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Superóxidos/metabolismo
17.
Foods ; 11(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35741987

RESUMEN

The distinct dark-red skin of Huaniu apples renders them attractive to customers. However, the mechanism that leads to the development of the color of the fruit is unclear. In this study, we found that compared with red Fuji (a bright-red apple cultivar), Huaniu apples had higher contents of (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-gallocatechin gallate (GCG), and procyanidins (PCs) B2 and C1 in the peel, which implies that the polymerization of the flavanols and PCs may be correlated with the dark-red skin of the fruit. Using EC as a substrate, we purified an enzyme from Huaniu peel. We performed protein sequencing and discovered that the enzyme was a polyphenol oxidase (PPO). The molecular weight of the enzyme was approximately 140 kDa, which we estimated by native-PAGE and SDS-PAGE, while it was 61 kDa by urea-SDS-PAGE, from which we discovered that the PPO was a dimer. We observed the lowest Km value for catechol (0.60 mM), and the best substrate was 4-methylcatechol, with a Vmax of 526.32 U mg-1 protein. EC is a suitable natural substrate, with a Km value of 1.17 mM, and 55.27% of the Vmax/Km of 4-methylcatechol. When we used EC as a substrate, the optimum temperature and pH of the PPO were 25 °C and 5.0, respectively. In summary, we purified a dimeric PPO from Huaniu apples that showed high activity to EC, which might catalyze the polymerization of flavanols and PCs and lead to the dark-red color development of the fruit.

18.
Hortic Res ; 9: uhac130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36936195

RESUMEN

Abscisic acid (ABA) is a phytohormone essential for plants to respond to various environmental stresses, and abscisic acid-insensitive 5 (ABI5) is a basic leucine zipper transcription factor of the ABA signaling pathway. Exogenous ABA induces cold tolerance in bananas; however, the role of MaABI5-like in ABA-induced cold tolerance remains unexplored. The present study found that exogenous ABA alleviated chilling injury of 'Fenjiao' banana, induced the accumulation of endogenous ABA, unsaturated fatty acids, and flavonoid content, and reduced the saturated fatty acid content. Moreover, ABA treatment upregulated the transcription levels of MaABI5-like, fatty acid desaturation genes, and flavonoid synthesis-related genes during cold storage. More interestingly, MaABI5-like directly interacted with the promoter of genes related to fatty acid desaturation (MaFAD3-1, MaFAD3-4, MaFAD3-5, MaFAD6-2, MaFAD6-3) and flavonoid synthesis (MaPAL-like, MaPAL-like1, MaC4H-like3, Ma4CL-like1, Ma4CL-like10, MaCHS6-4-like, and MaFLS) and activated their expressions. Furthermore, the transient overexpression of MaABI5-like in 'Fenjiao' banana fruit and ectopic expression in tomato plants enhanced cold tolerance and upregulated fatty acid desaturation and flavonoid synthesis-related gene transcript levels. The reduced expression of MaABI5-like by virus-induced gene silencing in 'Fenjiao' banana increased chilling injury and downregulated the expression of fatty acid desaturation and flavonoid synthesis-related genes. Thus, the study indicates that MaABI5-like regulates ABA-induced cold tolerance by increasing unsaturated fatty acid and flavonoid content.

19.
J Agric Food Chem ; 69(50): 15218-15230, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34889093

RESUMEN

Litchi pericarp turns brown rapidly after fruit harvest, while the mechanism remains obscure. The contents of (-)-epicatechin (EC) and procyanidins (PCs) A2/B1/B2/C1 decreased during the pericarp browning, and a previously identified laccase (ADE/LAC) showed activity to these compounds, with brown products observed in the reactions. By UPLC-DAD-QTOF-MS/MS, isomers of dimeric, trimeric, and tetrameric PCs were detected in the EC-ADE/LAC reaction. In the presence of cyanidin-3-O-rutiside and rutin, anthocyanin-EC and rutin-EC adducts were, respectively, produced, and darker brown precipitation was observed in these reactions relatively to the EC-ADE/LAC reaction alone. ADE/LAC catalyzed the conversion of PC B2 to A-type PC dimers and B-type PC tetramers. ADE/LAC complemented the transparent testa of Arabidopsis LAC15-loss-of-function mutant (tt10) to wild-type dark brown seed coat. The results demonstrated that ADE/LAC-mediated flavonoid polymerization played an important role in the browning of pericarp.


Asunto(s)
Litchi , Proantocianidinas , Flavonoides , Frutas , Lacasa/genética , Polimerizacion , Espectrometría de Masas en Tándem
20.
Mol Plant ; 14(7): 1149-1167, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33857689

RESUMEN

The proteolytic degradation of the photodamaged D1 core subunit during the photosystem II (PSII) repair cycle is well understood, but chlorophyll turnover during D1 degradation remains unclear. Here, we report that Arabidopsis thaliana CHLOROPHYLLASE 1 (CLH1) plays important roles in the PSII repair process. The abundance of CLH1 and CLH2 peaks in young leaves and is induced by high-light exposure. Seedlings of clh1 single and clh1-1/2-2 double mutants display increased photoinhibition after long-term high-light exposure, whereas seedlings overexpressing CLH1 have enhanced light tolerance compared with the wild type. CLH1 is localized in the developing chloroplasts of young leaves and associates with the PSII-dismantling complexes RCC1 and RC47, with a preference for the latter upon exposure to high light. Furthermore, degradation of damaged D1 protein is retarded in young clh1-1/2-2 leaves after 18-h high-light exposure but is rescued by the addition of recombinant CLH1 in vitro. Moreover, overexpression of CLH1 in a variegated mutant (var2-2) that lacks thylakoid protease FtsH2, with which CLH1 interacts, suppresses the variegation and restores D1 degradation. A var2-2 clh1-1/2-2 triple mutant shows more severe variegation and seedling death. Taken together, these results establish CLH1 as a long-sought chlorophyll dephytylation enzyme that is involved in PSII repair and functions in long-term adaptation of young leaves to high-light exposure by facilitating FtsH-mediated D1 degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Choque Térmico/metabolismo , Luz , Metaloendopeptidasas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Fotosíntesis , Hojas de la Planta/enzimología , Protectores contra Radiación , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA