Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
FASEB J ; 38(1): e23326, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019196

RESUMEN

The identification and recombinant production of functional antigens and/or epitopes of pathogens represent a crucial step for the development of an effective protein-based vaccine. Many vaccine targets are outer membrane proteins anchored into the lipidic bilayer through an extended hydrophobic portion making their recombinant production challenging. Moreover, only the extracellular loops, and not the hydrophobic regions, are naturally exposed to the immune system. In this work, the Domain 3 (D3) from Group B Streptococcus (GBS) pilus 2a backbone protein has been identified and engineered to be used as a scaffold for the display of extracellular loops of two Neisseria gonorrhoeae membrane proteins (PorB.1b and OpaB). A computational structure-based approach has been applied to the design of both the scaffold and the model antigens. Once identified the best D3 engineerable site, several different chimeric D3 displaying PorB.1b and OpaB extracellular loops were produced as soluble proteins. Each molecule has been characterized in terms of solubility, stability, and ability to correctly display the foreign epitope. This antigen dissection strategy allowed the identification of most immunogenic extracellular loops of both PorB.1b and OpaB gonococcal antigens. The crystal structure of chimeric D3 displaying PorB.1b immunodominant loop has been obtained confirming that the engineerization did not alter the predicted native structure of this epitope. Taken together, the reported data suggest that D3 is a novel protein scaffold for epitope insertion and display, and a valid alternative to the production of whole membrane protein antigens. Finally, this work describes a generalized computational structure-based approach for the identification, design, and dissection of epitopes in target antigens through chimeric proteins.


Asunto(s)
Proteínas de la Membrana , Vacunas , Epítopos/genética , Antígenos Bacterianos/genética , Membrana Dobles de Lípidos
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047152

RESUMEN

The presentation of viral antigens on nanoparticles in multivalent arrays has emerged as a valuable technology for vaccines. On the nanoparticle surface, highly ordered, repetitive arrays of antigens can mimic their geometric arrangement on virion surfaces and elicit stronger humoral responses than soluble viral antigens. More recently, bacterial antigens have been presented on self-assembling protein nanoparticles and have elicited protective antibody and effective T-helper responses, further supporting the nanoparticle platform as a universal approach for stimulating potent immunogenicity. Here, we present the rational design, structural analysis, and immunogenicity of self-assembling ferritin nanoparticles displaying eight copies of the Neisseria meningitidis trimeric adhesin NadA. We engineered constructs consisting of two different NadA fragments, head only and head with stalk, that we fused to ferritin and expressed in Escherichia coli. Both fusion constructs self-assembled into the expected nanoparticles as determined by Cryo electron microscopy. In mice, the two nanoparticles elicited comparable NadA antibody levels that were 10- to 100-fold higher than those elicited by the corresponding NadA trimer subunits. Further, the NadAferritin nanoparticles potently induced complement-mediated serum bactericidal activity. These findings confirm the value of self-assembling nanoparticles for optimizing the immunogenicity of bacterial antigens and support the broad applicability of the approach to vaccine programs, especially for the presentation of trimeric antigens.


Asunto(s)
Nanopartículas , Neisseria meningitidis , Ratones , Animales , Ferritinas , Antígenos Bacterianos , Antígenos Virales , Anticuerpos Bloqueadores , Vacunas Combinadas , Nanopartículas/química
3.
PLoS Pathog ; 16(10): e1008882, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007046

RESUMEN

Neisseria meningitidis serogroup B (MenB) is the leading cause of meningococcal meningitis and sepsis in industrialized countries, with the highest incidence in infants and adolescents. Two recombinant protein vaccines that protect against MenB are now available (i.e. 4CMenB and MenB-fHbp). Both vaccines contain the Factor H Binding Protein (fHbp) antigen, which can bind the Human Factor H (fH), the main negative regulator of the alternative complement pathway, thus enabling bacterial survival in the blood. fHbp is present in meningococcal strains as three main variants which are immunologically distinct. Here we sought to obtain detailed information about the epitopes targeted by anti-fHbp antibodies induced by immunization with the 4CMenB multicomponent vaccine. Thirteen anti-fHbp human monoclonal antibodies (mAbs) were identified in a library of over 100 antibody fragments (Fabs) obtained from three healthy adult volunteers immunized with 4CMenB. Herein, the key cross-reactive mAbs were further characterized for antigen binding affinity, complement-mediated serum bactericidal activity (SBA) and the ability to inhibit binding of fH to live bacteria. For the first time, we identified a subset of anti-fHbp mAbs able to elicit human SBA against strains with all three variants and able to compete with human fH for fHbp binding. We present the crystal structure of fHbp v1.1 complexed with human antibody 4B3. The structure, combined with mutagenesis and binding studies, revealed the critical cross-reactive epitope. The structure also provided the molecular basis of competition for fH binding. These data suggest that the fH binding site on fHbp v1.1 can be accessible to the human immune system upon immunization, enabling elicitation of human mAbs broadly protective against MenB. The novel structural, biochemical and functional data are of great significance because the human vaccine-elicited mAbs are the first reported to inhibit the binding of fH to fHbp, and are bactericidal with human complement. Our studies provide molecular insights into the human immune response to the 4CMenB meningococcal vaccine and fuel the rationale for combined structural, immunological and functional studies when seeking deeper understanding of the mechanisms of action of human vaccines.


Asunto(s)
Anticuerpos/inmunología , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Meningitis Meningocócica/inmunología , Vacunas Meningococicas/administración & dosificación , Neisseria meningitidis/inmunología , Adulto , Anticuerpos/sangre , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Factor H de Complemento/inmunología , Factor H de Complemento/metabolismo , Humanos , Meningitis Meningocócica/metabolismo , Meningitis Meningocócica/microbiología , Meningitis Meningocócica/prevención & control
4.
FASEB J ; 34(8): 10329-10341, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32725956

RESUMEN

The classical complement pathway is triggered when antigen-bound immunoglobulins bind to C1q through their Fc region. While C1q binds to a single Fc with low affinity, a higher avidity stable binding of two or more of C1q globular heads initiates the downstream reactions of the complement cascade ultimately resulting in bacteriolysis. Synergistic bactericidal activity has been demonstrated when monoclonal antibodies recognize nonoverlapping epitopes of the same antigen. The aim of the present work was to investigate the synergistic effect between antibodies directed toward different antigens. To this purpose, we investigated the bactericidal activity induced by combinations of monoclonal antibodies (mAbs) raised against factor H-binding protein (fHbp) and Neisserial Heparin-Binding Antigen (NHBA), two major antigens included in Bexsero, the vaccine against Meningococcus B, for prevention from this devastating disease in infants and adolescents. Collectively, our results show that mAbs recognizing different antigens can synergistically activate complement even when each single Mab is not bactericidal, reinforcing the evidence that cooperative immunity induced by antigen combinations can represent a remarkable added value of multicomponent vaccines. Our study also shows that the synergistic effect of antibodies is modulated by the nature of the respective epitopes, as well as by the antigen density on the bacterial cell surface.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Proteínas del Sistema Complemento/inmunología , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/inmunología , Proteínas Portadoras/inmunología , Factor H de Complemento/inmunología , Epítopos/inmunología , Neisseria meningitidis/inmunología , Determinación de Anticuerpos Séricos Bactericidas/métodos
5.
Curr Top Microbiol Immunol ; 404: 203-233, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26847355

RESUMEN

Pili of Gram-positive bacteria are unique structures on the bacterial surface, assembled from covalently linked polypeptide subunits. Pilus assembly proceeds by transpeptidation reactions catalyzed by sortases, followed by covalent anchoring of the filament in the peptidoglycan layer. Another distinctive property is the presence of intramolecular isopeptide bonds, conferring extraordinary chemical and mechanical stability to these elongated structures. Besides their function in cell adhesion and biofilm formation, this section discusses possible application of pilus constituents as vaccine components against Gram-positive pathogens.


Asunto(s)
Fimbrias Bacterianas/química , Bacterias Grampositivas/fisiología , Adhesión Bacteriana , Vacunas Bacterianas/inmunología , Biopelículas , Fimbrias Bacterianas/inmunología , Fimbrias Bacterianas/fisiología
6.
J Infect Dis ; 213(4): 516-22, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26401026

RESUMEN

The adhesion of Streptococcus pneumoniae is a key step during colonization of human respiratory tract mucosae. Here we demonstrate that pneumococcal type I pilus significantly increases the adhesiveness of poorly adhering highly capsulated strains in vitro. Interestingly, preincubation of bacteria with antibodies against the major pilus backbone subunit (RrgB) or the adhesin component (RrgA) impaired pneumococcal association to human epithelial cells. Screening for anti-RrgA monoclonal antibodies specifically affecting the adhesive capacity of S. pneumoniae led to the identification of the monoclonal 11B9/61 antibody, which greatly reduced pilus-dependent cell contact. Proteomic-based epitope mapping of 11B9/61 monoclonal antibody revealed a well-exposed epitope on the D2 domain of RrgA as the target of this functional antibody. The data presented here confirm the importance of pilus I for S. pneumoniae pathogenesis and the potential use of antipilus antibodies to prevent bacterial colonization.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Adhesión Bacteriana/efectos de los fármacos , Células Epiteliales/microbiología , Proteínas Fimbrias/inmunología , Fimbrias Bacterianas/inmunología , Streptococcus pneumoniae/inmunología , Línea Celular , Mapeo Epitopo , Humanos , Factores de Virulencia/inmunología
7.
FASEB J ; 28(4): 1644-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24371123

RESUMEN

Factor H binding protein (fHbp) is one of the main antigens of the 4-component meningococcus B (4CMenB) multicomponent vaccine against disease caused by serogroup B Neisseria meningitidis (MenB). fHbp binds the complement down-regulating protein human factor H (hfH), thus resulting in immune evasion. fHbp exists in 3 variant groups with limited cross-protective responses. Previous studies have described the generation of monoclonal antibodies (mAbs) targeting variant-specific regions of fHbp. Here we report for the first time the functional characterization of two mAbs that recognize a wide panel of fHbp variants and subvariants on the MenB surface and that are able to inhibit fHbp binding to hfH. The antigenic regions targeted by the two mAbs were accurately mapped by hydrogen-deuterium exchange mass spectrometry (HDX-MS), revealing partially overlapping epitopes on the N terminus of fHbp. Furthermore, while none of the mAbs had bactericidal activity on its own, a synergistic effect was observed for each of them when tested by the human complement serum bactericidal activity (hSBA) assay in combination with a second nonbactericidal mAb. The bases underlying fHbp variant cross-reactivity, as well as inhibition of hfH binding and cooperativity effect observed for the two mAbs, are discussed in light of the mapped epitopes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Anticuerpos Monoclonales/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Factor H de Complemento/inmunología , Medición de Intercambio de Deuterio , Mapeo Epitopo/métodos , Epítopos/química , Epítopos/genética , Variación Genética , Humanos , Espectrometría de Masas , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/microbiología , Vacunas Meningococicas/inmunología , Modelos Moleculares , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/fisiología , Unión Proteica/inmunología , Conformación Proteica , Resonancia por Plasmón de Superficie
8.
Chembiochem ; 15(6): 836-43, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24616190

RESUMEN

Systematic characterisation of the reactivity of the lysine moieties in CRM197 towards N-hydroxysuccinimide linkers bearing alkynes or azides is described. This involves two-step conjugation of various glycans to CRM197 by click chemistry in a well-defined manner. By semiquantitative LC-MS/MS analysis of proteolytic digests of the conjugates formed, the reactivity of lysine residues in the protein was mapped and ranked. Computational analysis of the solvent accessibility of each lysine residue (based on the CRM197 crystal structure) established a correlation between reactivity and surface exposure. By this approach, conjugation involving lysine residues (normally a random process) can be controlled. It enables the preparation of lysine-mediated glycoconjugates with improved batch-to-batch reproducibility, thereby producing neo-glycoconjugates with more-consistent biological activity.


Asunto(s)
Proteínas Bacterianas/química , Lisina/química , Polisacáridos/química , Alquinos/química , Secuencia de Aminoácidos , Azidas/química , Proteínas Bacterianas/metabolismo , Cromatografía Líquida de Alta Presión , Química Clic , Cristalografía por Rayos X , Dimerización , Glicoconjugados/química , Péptidos/análisis , Péptidos/química , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
mBio ; 15(8): e0110724, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39041817

RESUMEN

Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.


Asunto(s)
Adhesinas Bacterianas , Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Adhesión Bacteriana , Interacciones Huésped-Patógeno , Lectinas , Humanos , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas/metabolismo , Lectinas/genética , Lectinas/inmunología , Animales , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Unión Proteica , Ratones , Células CHO , Cricetulus , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Neisseria meningitidis/inmunología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/inmunología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/inmunología , Neisseria meningitidis Serogrupo B/metabolismo
10.
Infect Immun ; 81(8): 2851-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23716610

RESUMEN

Clostridium difficile is a spore-forming bacterium that can reside in animals and humans. C. difficile infection causes a variety of clinical symptoms, ranging from diarrhea to fulminant colitis. Disease is mediated by TcdA and TcdB, two large enterotoxins released by C. difficile during colonization of the gut. In this study, we evaluated the ability of recombinant toxin fragments to induce neutralizing antibodies in mice. The protective efficacies of the most promising candidates were then evaluated in a hamster model of disease. While limited protection was observed with some combinations, coadministration of a cell binding domain fragment of TcdA (TcdA-B1) and the glucosyltransferase moiety of TcdB (TcdB-GT) induced systemic IgGs which neutralized both toxins and protected vaccinated animals from death following challenge with two strains of C. difficile. Further characterization revealed that despite high concentrations of toxin in the gut lumens of vaccinated animals during the acute phase of the disease, pathological damage was minimized. Assessment of gut contents revealed the presence of TcdA and TcdB antibodies, suggesting that systemic vaccination with this pair of recombinant polypeptides can limit the disease caused by toxin production during C. difficile infection.


Asunto(s)
Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Clostridium/inmunología , Enterotoxinas/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/inmunología , Antígenos Bacterianos/inmunología , Clostridioides difficile/inmunología , Infecciones por Clostridium/prevención & control , Cricetinae , Modelos Animales de Enfermedad , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Ratones , Proteínas Recombinantes/inmunología
11.
J Biol Chem ; 286(16): 14588-97, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21367860

RESUMEN

Streptococcus pneumoniae expresses on its surface adhesive pili, involved in bacterial attachment to epithelial cells and virulence. The pneumococcal pilus is composed of three proteins, RrgA, RrgB, and RrgC, each stabilized by intramolecular isopeptide bonds and covalently polymerized by means of intermolecular isopeptide bonds to form an extended fiber. RrgB is the pilus scaffold subunit and is protective in vivo in mouse models of sepsis and pneumonia, thus representing a potential vaccine candidate. The crystal structure of a major RrgB C-terminal portion featured an organization into three independently folded protein domains (D2-D4), whereas the N-terminal D1 domain (D1) remained unsolved. We have tested the four single recombinant RrgB domains in active and passive immunization studies and show that D1 is the most effective, providing a level of protection comparable with that of the full-length protein. To elucidate the structural features of D1, we solved the solution structure of the recombinant domain by NMR spectroscopy. The spectra analysis revealed that D1 has many flexible regions, does not contain any intramolecular isopeptide bond, and shares with the other domains an Ig-like fold. In addition, we demonstrated, by site-directed mutagenesis and complementation in S. pneumoniae, that the D1 domain contains the Lys residue (Lys-183) involved in the formation of the intermolecular isopeptide bonds and pilus polymerization. Finally, we present a model of the RrgB protein architecture along with the mapping of two surface-exposed linear epitopes recognized by protective antisera.


Asunto(s)
Proteínas Fimbrias/química , Streptococcus pneumoniae/metabolismo , Animales , Proteínas Bacterianas/química , Adhesión Celular , Modelos Animales de Enfermedad , Epítopos/química , Proteínas Fimbrias/genética , Prueba de Complementación Genética , Espectroscopía de Resonancia Magnética/métodos , Ratones , Ratones Endogámicos BALB C , Mutagénesis Sitio-Dirigida , Péptidos/química , Conformación Proteica , Estructura Terciaria de Proteína , Sepsis/metabolismo
12.
Bioconjug Chem ; 23(6): 1119-26, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22594688

RESUMEN

Protein array technology is an emerging tool that enables high-throughput screening of protein-protein or protein-lipid interactions and identification of immunodominant antigens during the course of a bacterial or viral infection. In this work, we developed an Influenza virus protein array using the sortase-mediated transpeptidation reaction known as "Sortagging". LPETG-tagged Influenza virus proteins from bacterial and eukaryotic cellular extracts were immobilized at their carboxyl-termini onto a preactivated amine-glass slide coated with a Gly3 linker. Immobilized proteins were revealed by specific antibodies, and the newly generated Sortag-protein chip can be used as a device for antigen and/or antibody screening. The specificity of the Sortase A (SrtA) reaction avoids purification steps in array building and allows immobilization of proteins in an oriented fashion. Previously, this versatile technology has been successfully employed for protein labeling and protein conjugation. Here, the tool is implemented to covalently link proteins of a viral genome onto a solid support. The system could readily be scaled up to proteins of larger genomes in order to develop protein arrays for high-throughput screening.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Hemaglutininas Virales/análisis , Proteínas Inmovilizadas/análisis , Virus de la Influenza A/química , Análisis por Matrices de Proteínas/instrumentación , Proteínas Virales/análisis , Secuencia de Aminoácidos , Línea Celular , Clonación Molecular , Diseño de Equipo , Escherichia coli/genética , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Humanos , Proteínas Inmovilizadas/genética , Proteínas Inmovilizadas/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Gripe Humana/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Comput Struct Biotechnol J ; 20: 2070-2081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601959

RESUMEN

Invasive meningococcal disease can cause fatal sepsis and meningitis and is a global health threat. Factor H binding protein (fHbp) is a protective antigen included in the two currently available vaccines against serogroup B meningococcus (MenB). FHbp is a remarkably variable surface-exposed meningococcal virulence factor with over 1300 different amino acid sequences identified so far. Based on this variability, fHbp has been classified into three variants, two subfamilies or nine modular groups, with low degrees of cross-protective activity. Here, we report the crystal structure of a natural fHbp cross-variant chimera, named variant1-2,3.x expressed by the MenB clinical isolate NL096, at 1.2 Å resolution, the highest resolution of any fHbp structure reported to date. We combined biochemical, site-directed mutagenesis and computational biophysics studies to deeply characterize this rare chimera. We determined the structure to be composed of two adjacent domains deriving from the three variants and determined the molecular basis of its stability, ability to bind Factor H and to adopt the canonical three-dimensional fHbp structure. These studies guided the design of loss-of-function mutations with potential for even greater immunogenicity. Moreover, this study represents a further step in the understanding of the fHbp biological and immunological evolution in nature. The chimeric variant1-2,3.x fHbp protein emerges as an intriguing cross-protective immunogen and suggests that identification of such naturally occurring hybrid proteins may result in stable and cross-protective immunogens when seeking to design and develop vaccines against highly variable pathogens.

14.
Front Immunol ; 13: 834711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359919

RESUMEN

Staphylococcal protein A (SpA) is a multifunctional, highly conserved virulence factor of Staphylococcus aureus. By binding the Fc portion of all human IgG subclasses apart from IgG3, SpA interferes with antibody and complement deposition on the bacterial surface, impairing staphylococcal clearance by phagocytosis. Because of its anti-opsonic properties, SpA is not investigated as a surface antigen to mediate bacterial phagocytosis. Herein we investigate human sera for the presence of SpA-opsonizing antibodies. The screening revealed that sera containing IgG3 against SpA were able to correctly opsonize the target and drive Fcγ receptor-mediated interactions and phagocytosis. We demonstrated that IgG3 Fc is significantly more efficient in inducing phagocytosis of SpA-expressing S. aureus as compared to IgG1 Fc in an assay resembling physiological conditions. Furthermore, we show that the capacity of SpA antibodies to induce phagocytosis depends on the specific epitope recognized by the IgGs on SpA molecules. Overall, our results suggest that anti-SpA IgG3 antibodies could favor the anti-staphylococcal response in humans, paving the way towards the identification of a correlate of protection against staphylococcal infections.


Asunto(s)
Infecciones Estafilocócicas , Proteína Estafilocócica A , Humanos , Inmunoglobulina G , Proteínas Opsoninas , Fagocitosis , Staphylococcus , Staphylococcus aureus
15.
J Am Soc Mass Spectrom ; 32(7): 1575-1582, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33683906

RESUMEN

Characterization of antigen-antibody interactions is crucial for understanding antibody-mediated protection against pathogens, biopharmaceutical development, as well as evaluation of the immune response post vaccination. Bexsero is a multicomponent vaccine against Neisseria meningitidis serogroup B in which one of the key vaccine antigens is Neisserial adhesin A (NadA), a trimeric coiled-coil protein. Two NadA-specific monoclonal antibodies (mAbs) isolated from Bexsero-vaccinated individuals have been shown to have similar binding affinity and appear to recognize a similar antigen region, yet only one of the mAbs is bactericidal. In this study, we use hydrogen/deuterium exchange mass spectrometry (HDX-MS) to perform an in-depth study of the interaction of the two mAbs with NadA antigen using a combined epitope and paratope mapping strategy. In addition, we use surface plasmon resonance (SPR) to investigate the stoichiometry of the binding of the two mAbs to NadA. While epitope mapping only identifies a clear binding impact of one of the mAbs on NadA, the paratope mapping analyses shows that both mAbs are binding to NadA through several complementarity determining regions spanning both heavy and light chains. Our results highlight the advantage of combined epitope and paratope mapping HDX-MS experiments and supporting biochemical experiments to characterize antigen-antibody interactions. Through this combined approach, we provide a rationale for how the binding stoichiometry of the two mAbs to the trimeric NadA antigen can explain the difference in bactericidal activity of the two mAbs.


Asunto(s)
Adhesinas Bacterianas , Antibacterianos , Anticuerpos Monoclonales , Mapeo Epitopo/métodos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Sitios de Unión de Anticuerpos , Unión Proteica , Resonancia por Plasmón de Superficie/métodos
16.
Vaccines (Basel) ; 9(3)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800727

RESUMEN

Ensuring the stability of vaccines is crucial to successfully performing global immunization programs. Outer Membrane Vesicles (OMV) are receiving great attention as vaccine platforms. OMV are complex molecules and few data have been collected so far on their stability. OMV produced by bacteria, genetically modified to increase their spontaneous release, simplifying their production, are also known as Generalized Modules for Membrane Antigens (GMMA). We have performed accelerated stability studies on GMMA from different pathogens and verified the ability of physico-chemical and immunological methods to detect possible changes. High-temperature conditions (100 °C for 40 min) did not affect GMMA stability and immunogenicity in mice, in contrast to the effect of milder temperatures for a longer period of time (37 °C or 50 °C for 4 weeks). We identified critical quality attributes to monitor during stability assessment that could impact vaccine efficacy. In particular, specific recognition of antigens by monoclonal antibodies through competitive ELISA assays may replace in vivo tests for the potency assessment of GMMA-based vaccines.

17.
Infect Immun ; 78(12): 5033-42, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20823200

RESUMEN

Thirty percent of Streptococcus pneumoniae isolates contain pilus islet 1, coding for a pilus composed of the backbone subunit RrgB and two ancillary proteins, RrgA and RrgC. RrgA is the major determinant of in vitro adhesion associated with pilus 1, is protective in vivo in mouse models, and exists in two variants (clades I and II). Mapping of the sequence variability onto the RrgA structure predicted from X-ray data showed that the diversity was restricted to the "head" of the protein, which contains the putative binding domains, whereas the elongated "stalk" was mostly conserved. To investigate whether this variability could influence the adhesive capacity of RrgA and to map the regions important for binding, two full-length protein variants and three recombinant RrgA portions were tested for adhesion to lung epithelial cells and to purified extracellular matrix (ECM) components. The two RrgA variants displayed similar binding abilities, whereas none of the recombinant fragments adhered at levels comparable to those of the full-length protein, suggesting that proper folding and structural arrangement are crucial to retain protein functionality. Furthermore, the two RrgA variants were shown to be cross-reactive in vitro and cross-protective in vivo in a murine model of passive immunization. Taken together, these data indicate that the region implicated in adhesion and the functional epitopes responsible for the protective ability of RrgA may be conserved and that the considerable level of variation found within the "head" domain of RrgA may have been generated by immunologic pressure without impairing the functional integrity of the pilus.


Asunto(s)
Adhesinas Bacterianas/fisiología , Fimbrias Bacterianas/fisiología , Streptococcus pneumoniae/patogenicidad , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Protección Cruzada/genética , Protección Cruzada/fisiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Fimbrias Bacterianas/genética , Citometría de Flujo , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Inmunización Pasiva , Ratones , Ratones Endogámicos BALB C , Infecciones Neumocócicas/microbiología , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiología
18.
Infect Immun ; 77(7): 2957-61, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19433540

RESUMEN

Streptococcus pneumoniae sortase A (SrtA) is a transpeptidase that is highly conserved among pneumococcal strains, whose involvement in adhesion/colonization has been reported. We found that intraperitoneal immunization with recombinant SrtA conferred to mice protection against S. pneumoniae intraperitoneal challenge and that the passive transfer of immune serum before intraperitoneal challenge was also protective. Moreover, by using the intranasal challenge model, we observed a significant reduction of bacteremia when mice were intraperitoneally immunized with SrtA, while a moderate decrease of lung infection was achieved by intranasal immunization, even though no influence on nasopharynx colonization was seen. Taken together, our results suggest that SrtA is a good candidate for inclusion in a multicomponent, protein-based, pneumococcal vaccine.


Asunto(s)
Aminoaciltransferasas/inmunología , Proteínas Bacterianas/inmunología , Cisteína Endopeptidasas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Estreptocócicas/inmunología , Streptococcus pneumoniae/inmunología , Animales , Anticuerpos Antibacterianos/uso terapéutico , Bacteriemia/prevención & control , Portador Sano/prevención & control , Femenino , Inmunización Pasiva , Ratones , Ratones Endogámicos BALB C , Nasofaringe/microbiología , Neumonía Neumocócica/prevención & control , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/inmunología
19.
Sci Rep ; 9(1): 17016, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745120

RESUMEN

The Gram-negative bacterium B. pertussis is the causative agent of whooping cough. This infection is re-emerging and new features related to Bordetella pathogenesis and microbiology could be relevant to defeat it. Therefore, we focused our attention on BP1253, a predicted exported protein from B. pertussis erroneously classified as lysine decarboxylase. We showed that BP1253 shares the highly conserved motif PGGxGTxxE and the key catalytic amino-acid residues with newly structurally characterized "LONELY GUY" (LOG) proteins. Biochemical studies have confirmed that this protein functions as a cytokinin-activating enzyme since it cleaves the N-glycosidic linkage between the base and the ribose, leading to the formation of free bases, which are the active form of plant hormones called cytokinins. Remarkably, BP1253 selectively binds monophosphate nucleotides such as AMP, GMP and CMP, showing a wider variety in binding capacity compared to other LOGs. Cytokinin production studies performed with B. pertussis have revealed 6-O-methylguanine to be the physiological product of BP1253 in agreement with the higher activity of the enzyme towards GMP. 6-O-methylguanine is likely to be responsible for the increased sensitivity of B. pertussis to oxidative stress. Although BP1253 has a primary sequence resembling the hexameric type-II LOGs, the dimeric state and the presence of specific amino-acids suggests that BP1253 can be classified as a novel type-II LOG. The discovery of a LOG along with its product 6-O-methylguanine in the human pathogen B. pertussis may lead to the discovery of unexplored functions of LOGs, broadening their role beyond plants.


Asunto(s)
Aminohidrolasas/metabolismo , Bordetella pertussis/enzimología , Citocininas/metabolismo , Secuencia de Aminoácidos , Aminohidrolasas/genética , Bordetella pertussis/genética , Guanina/análogos & derivados , Guanina/biosíntesis , Humanos , Estrés Oxidativo , Tos Ferina/microbiología
20.
Commun Biol ; 2: 241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263785

RESUMEN

Monoclonal antibody (mAb) cooperativity is a phenomenon triggered when mAbs couples promote increased bactericidal killing compared to individual partners. Cooperativity has been deeply investigated among mAbs elicited by factor H-binding protein (fHbp), a Neisseria meningitidis surface-exposed lipoprotein and one of the key antigens included in both serogroup B meningococcus vaccine Bexsero and Trumenba. Here we report the structural and functional characterization of two cooperative mAbs pairs isolated from Bexsero vaccines. The 3D electron microscopy structures of the human mAb-fHbp-mAb cooperative complexes indicate that the angle formed between the antigen binding fragments (fAbs) assume regular angle and that fHbp is able to bind simultaneously and stably the cooperative mAbs pairs and human factor H (fH) in vitro. These findings shed light on molecular basis of the antibody-based mechanism of protection driven by simultaneous recognition of the different epitopes of the fHbp and underline that cooperativity is crucial in vaccine efficacy.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Anticuerpos Monoclonales/inmunología , Actividad Bactericida de la Sangre , Factor H de Complemento/metabolismo , Mapeo Epitopo , Humanos , Vacunas Meningococicas/inmunología , Microscopía Electrónica de Transmisión , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA