Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chemosphere ; 287(Pt 3): 132285, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34563769

RESUMEN

Microbial fuel cell (MFC) is lauded for its potentials to solve both energy crisis and environmental pollution. Technologically, it offers the capability to harness electricity from the chemical energy stored in the organic substrate with no intermediate steps, thereby minimizes the entropic loss due to the inter-conversion of energy. The sciences underneath such MFCs include the electron and proton generation from the metabolic decomposition of the substrate by microbes at the anode, followed by the shuttling of these charges to cathode for electricity generation. While its promising prospects were mutually evinced in the past investigations, the upscaling of MFC in sustaining global energy demands and waste treatments is yet to be put into practice. In this context, the current review summarizes the important knowledge and applications of MFCs, concurrently identifies the technological bottlenecks that restricted its vast implementation. In addition, economic analysis was also performed to provide multiangle perspectives to readers. Succinctly, MFCs are mainly hindered by the slow metabolic kinetics, sluggish transfer of charged particles, and low economic competitiveness when compared to conventional technologies. From these hindering factors, insightful strategies for improved practicality of MFCs were formulated, with potential future research direction being identified too. With proper planning, we are delighted to see the industrialization of MFCs in the near future, which would benefit the entire human race with cleaner energy and the environment.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Electrodos , Electrones , Humanos , Aguas Residuales
2.
Environ Sci Pollut Res Int ; 29(8): 11304-11319, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34542818

RESUMEN

Accounting for SARS-CoV-2 adsorption on solids suspended in wastewater is a necessary step towards the reliable estimation of virus shedding rate in a sewerage system, based on measurements performed at a terminal collection station, i.e., at the entrance of a wastewater treatment plant. This concept is extended herein to include several measurement stations across a city to enable the estimation of spatial distribution of virus shedding rate. This study presents a pioneer general model describing the most relevant physicochemical phenomena with a special effort to reduce the complicated algebra. This is performed both in the topology regime, introducing a discrete-continuous approach, and in the domain of independent variables, introducing a monodisperse moment method to reduce the dimensionality of the resulting population balance equations. The resulting simplified model consists of a large system of ordinary differential equations. A sensitivity analysis is performed with respect to some key parameters for a single pipe topology. Specific numerical techniques are employed for the integration of the model. Finally, a parametric case study for an indicative-yet realistic-sewerage piping system is performed to show how the model is applied to SARS-CoV-2 adsorption on wastewater solids in the presence of other competing species. This is the first model of this kind appearing in scientific literature and a first step towards setting up an inverse problem to assess the spatial distribution of virus shedding rate based on its concentration in wastewater.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adsorción , Humanos , Modelos Teóricos , Aguas Residuales
3.
Bioresour Technol ; 344(Pt A): 126207, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34715344

RESUMEN

In recent years, lignocellulosic biomass has emerged as one of the most versatile energy sources among the research community for the production of biofuels and value-added chemicals. However, biomass pretreatment plays an important role in reducing the recalcitrant properties of lignocellulose, leading to superior quality of target products in bioenergy production. Among existing pretreatment techniques, liquid hot water (LHW) pretreatment has several outstanding advantages compared to others including minimum formation of monomeric sugars, significant removal of hemicellulose, and positive environmental impacts; however, several constraints of LHW pretreatment should be clarified. This contribution aims to provide a comprehensive analysis of reaction mechanism, reactor characteristics, influencing factors, techno-economic aspects, challenges, and prospects for LHW-based biomass pretreatment. Generally, LHW pretreatment could be widely employed in bioenergy processing from biomass, but circular economy-based advanced pretreatment techniques should be further studied in the future to achieve maximum efficiency, and minimum cost and drawbacks.


Asunto(s)
Biocombustibles , Agua , Biomasa , Fuentes Generadoras de Energía , Azúcares
4.
Sci Total Environ ; 844: 156932, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35753493

RESUMEN

Conventional SARS-CoV-2 surveillance based on genotyping of clinical samples is characterized by challenges related to the available sequencing capacity, population sampling methodologies, and is time, labor, and resource-demanding. Wastewater-based variant surveillance constitutes a valuable supplementary practice, since it does not require extensive sampling, and provides information on virus prevalence in a timely and cost-effective manner. Consequently, we developed a sensitive real-time RT-PCR-based approach that exclusively amplifies and quantifies SARS-CoV-2 genomic regions carrying the S:Δ69/70 deletion, indicative of the Omicron BA.1 variant, in wastewater. The method was incorporated in the analysis of composite daily samples taken from the main Wastewater Treatment Plant of Thessaloniki, Greece, from 1 December 2021. The applicability of the methodology is dependent on the epidemiological situation. During Omicron BA.1 global emergence, Thessaloniki was experiencing a massive epidemic wave attributed solely to the Delta variant, according to genomic surveillance data. Since Delta does not possess the S:Δ69/70, the emergence of Omicron BA.1 could be monitored via the described methodology. Omicron BA.1 was detected in sewage samples on 19 December 2021 and a rapid increase of its viral load was observed in the following 10-day period, with an estimated early doubling time of 1.86 days. The proportion of the total SARS-CoV-2 load attributed to BA.1 reached 91.09 % on 7 January, revealing a fast Delta-to-Omicron transition pattern. The detection of Omicron BA.1 subclade in wastewater preceded the outburst of reported (presumable) Omicron cases in the city by approximately 7 days. The proposed wastewater surveillance approach based on selective PCR amplification of a genomic region carrying a deletion signature enabled rapid, real-time data acquisition on Omicron BA.1 prevalence and dynamics during the slow remission of the Delta wave. Timely provision of these results to State authorities readily influences the decision-making process for targeted public health interventions, including control measures, awareness, and preparedness.


Asunto(s)
COVID-19 , Aguas Residuales , COVID-19/epidemiología , Prueba de COVID-19 , Humanos , Reacción en Cadena de la Polimerasa/métodos , ARN Viral , SARS-CoV-2/genética , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales
5.
Sci Rep ; 12(1): 2659, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177697

RESUMEN

The COVID-19 pandemic represents an unprecedented global crisis necessitating novel approaches for, amongst others, early detection of emerging variants relating to the evolution and spread of the virus. Recently, the detection of SARS-CoV-2 RNA in wastewater has emerged as a useful tool to monitor the prevalence of the virus in the community. Here, we propose a novel methodology, called lineagespot, for the monitoring of mutations and the detection of SARS-CoV-2 lineages in wastewater samples using next-generation sequencing (NGS). Our proposed method was tested and evaluated using NGS data produced by the sequencing of 14 wastewater samples from the municipality of Thessaloniki, Greece, covering a 6-month period. The results showed the presence of SARS-CoV-2 variants in wastewater data. lineagespot was able to record the evolution and rapid domination of the Alpha variant (B.1.1.7) in the community, and allowed the correlation between the mutations evident through our approach and the mutations observed in patients from the same area and time periods. lineagespot is an open-source tool, implemented in R, and is freely available on GitHub and registered on bio.tools.


Asunto(s)
Mutación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Programas Informáticos , Aguas Residuales/virología , Humanos
6.
Waste Manag Res ; 23(4): 381-8, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16200988

RESUMEN

The lifespan of electric and electronic equipment is becoming shorter and the amount of related waste is increasing. This study aimed to contribute to the knowledge about qualitative and quantitative characteristics of such wastes in Greece. Specifically, results are presented from a field survey, which took place in the city of Thessaloniki, Greece, during the year 2002. The survey was conducted with suitable questionnaires in department stores and in households of various municipalities. Household appliances were grouped as follows: (A) large (refrigerator, freezer, washing machine, clothes dryer, electric cooker, microwave oven, electric heater), (B) small (vacuum cleaner, electric iron, hair dryer), (C) information technology and telecommunication equipment (PC, laptop, printer, phone) and (D) consumer equipment (radio, TV, video, DVD, console). The analysis indicated that the lifespan of all new goods is gradually reducing (apart from refrigerators, for which the lifespan was surprisingly found to be increasing) and provided linearized functions for predicting the lifespan, according to the year of manufacture, for certain large appliances.


Asunto(s)
Electrónica , Artículos Domésticos , Eliminación de Residuos , Terminales de Computador , Conservación de los Recursos Naturales , Recolección de Datos , Falla de Equipo , Grecia , Teléfono , Televisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA