Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36614154

RESUMEN

The aim of the present work was to obtain microbial lipids (single-cell oils and SCOs) from oleaginous yeast cultivated on biodiesel-derived glycerol and subsequently proceed to the enzymatic synthesis of high-value biosurfactant-type molecules in an aqueous medium, with SCOs implicated as acyl donors (ADs). Indeed, the initial screening of five non-conventional oleaginous yeasts revealed that the most important lipid producer was the microorganism Cryptococcus curvatus ATCC 20509. SCO production was optimised according to the nature of the nitrogen source and the initial concentration of glycerol (Glyc0) employed in the medium. Lipids up to 50% w/w in dry cell weight (DCW) (SCOmax = 6.1 g/L) occurred at Glyc0 ≈ 70 g/L (C/N ≈ 80 moles/moles). Thereafter, lipids were recovered and were subsequently used as ADs in the N-acylation reaction catalysed by aminoacylases produced from Streptomyces ambofaciens ATCC 23877 under aqueous conditions, while Candida antarctica lipase B (CALB) was used as a reference enzyme. Aminoacylases revealed excellent activity towards the synthesis of acyl-lysine only when free fatty acids (FAs) were used as the AD, and the rare regioselectivity in the α-amino group, which has a great impact on the preservation of the functional side chains of any amino acids or peptides. Aminoacylases presented higher α-oleoyl-lysine productivity and final titer (8.3 g/L) with hydrolysed SCO than with hydrolysed vegetable oil. The substrate specificity of both enzymes towards the three main FAs found in SCO was studied, and a new parameter was defined, viz., Specificity factor (Sf), which expresses the relative substrate specificity of an enzyme towards a FA present in a FA mixture. The Sf value of aminoacylases was the highest with palmitic acid in all cases tested, ranging from 2.0 to 3.0, while that of CALB was with linoleic acid (0.9-1.5). To the best of our knowledge, this is the first time that a microbial oil has been successfully used as AD for biosurfactant synthesis. This bio-refinery approach illustrates the concept of a state-of-the-art combination of enzyme and microbial technology to produce high-value biosurfactants through environmentally friendly and economically sound processes.


Asunto(s)
Glicerol , Topos , Animales , Glicerol/metabolismo , Aminoácidos/metabolismo , Lisina/metabolismo , Topos/metabolismo , Levaduras/metabolismo , Aceites de Plantas/metabolismo , Biocombustibles , Ácidos Grasos/metabolismo
2.
Yeast ; 36(5): 319-327, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30945772

RESUMEN

Citric acid (CA) productivity by Yarrowia lipolytica dependents on strain type, carbon source, carbon to nitrogen (C/N) molar ratio as well as physicochemical conditions (pH, temperature, oxygen transfer rate, etc.). In the current study, 10 different Y. lipolytica strains were first challenged in shake-flask culture for CA production in a glucose-based media under nitrogen-limited conditions. For the most promising one, strain K57, CA productivity was monitored during culture in batch bioreactor for three initial C/N molar ratio (167, 367, and 567 Cmol/Nmol). The highest CA yield (0.77 g/g glucose), titre (72.3 g/L CA), and productivity (0.04 g/g.h) were found for C/N ratio of 367. However, the highest growth rate was obtained for an initial C/N ratio of 167. From these results, Y. lipolytica strain K57 could be considered to produce CA at higher titre on glucose-based medium in batch bioreactor than others Y. lipolytica strain reported in the literature.


Asunto(s)
Reactores Biológicos , Ácido Cítrico/metabolismo , Yarrowia/crecimiento & desarrollo , Yarrowia/metabolismo , Técnicas de Cultivo Celular por Lotes , Medios de Cultivo/química , Fermentación , Glucosa/química , Nitrógeno/metabolismo
3.
Molecules ; 24(2)2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30634450

RESUMEN

Olive mill wastewaters (OMW) are the major effluent deriving from olive oil production and are considered as one of the most challenging agro-industrial wastes to treat. Crude glycerol is the main by-product of alcoholic beverage and oleochemical production activities including biodiesel production. The tremendous quantities of glycerol produced worldwide represent a serious environmental challenge. The aim of this study was to assess the ability of Yarrowia lipolytica strain ACA-DC 5029 to grow on nitrogen-limited submerged shake-flask cultures, in crude glycerol and OMW blends as well as in media with high initial glycerol concentration and produce biomass, cellular lipids, citric acid and polyols. The rationale of using such blends was the dilution of concentrated glycerol by OMW to (partially or fully) replace process tap water with a wastewater stream. The strain presented satisfactory growth in blends; citric acid production was not affected by OMW addition (Citmax~37.0 g/L, YCit/Glol~0.55 g/g) and microbial oil accumulation raised proportionally to OMW addition (Lmax~2.0 g/L, YL/X~20% w/w). Partial removal of color (~30%) and phenolic compounds (~10% w/w) of the blended media occurred. In media with high glycerol concentration, a shift towards erythritol production was noted (Erymax~66.0 g/L, YEry/Glol~0.39 g/g) simultaneously with high amounts of produced citric acid (Citmax~79.0 g/L, YCit/Glol~0.46 g/g). Fatty acid analysis of microbial lipids demonstrated that OMW addition in blended media and in excess carbon media with high glycerol concentration favored oleic acid production.


Asunto(s)
Glicerol/química , Aceite de Oliva/química , Aguas Residuales/química , Yarrowia/crecimiento & desarrollo , Técnicas de Cultivo Celular por Lotes , Biodegradación Ambiental , Ácido Cítrico/metabolismo , Residuos Industriales , Ácido Oléico/metabolismo , Yarrowia/metabolismo
4.
World J Microbiol Biotechnol ; 35(4): 63, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30923965

RESUMEN

The last years a constantly rising number of publications have appeared in the literature in relation to the production of oils and fats deriving from microbial sources (the "single cell oils"-SCOs). SCOs can be used as precursors for the synthesis of lipid-based biofuels or employed as substitutes of expensive oils rarely found in the plant or animal kingdom. In the present review-article, aspects concerning SCOs (economics, biochemistry, substrates, technology, scale-up), with emphasis on the potential of Mortierella isabellina were presented. Fats and hydrophilic substrates have been used as carbon sources for cultivating Zygomycetes. Among them, wild-type M. isabellina strains have been reported as excellent SCO-producers, with conversion yields on sugar consumed and lipid in DCW values reported comparable to the maximum ones achieved for genetically engineered SCO-producing strains. Lipids produced on glucose contain γ-linolenic acid (GLA), a polyunsaturated fatty acid (PUFA) of high dietary and pharmaceutical importance, though in low concentrations. Nevertheless, due to their abundance in oleic acid, these lipids are perfect precursors for the synthesis of 2nd generation biodiesel, while GLA can be recovered and directed to other usages. Genetic engineering focusing on over-expression of Δ6 and Δ12 desaturases and of C16 elongase may improve the fatty acid composition (viz. increasing the concentration of GLA or other nutritionally important PUFAs) of these lipids.


Asunto(s)
Biocombustibles , Lípidos/biosíntesis , Mortierella/metabolismo , Metabolismo de los Hidratos de Carbono , Medios de Cultivo , Ácidos Grasos/biosíntesis , Ácidos Grasos Insaturados/metabolismo , Ingeniería Genética , Glucosa/metabolismo , Lípidos/química , Mortierella/genética , Ácido Oléico/biosíntesis , Cigomicosis/metabolismo , Ácido gammalinolénico/metabolismo
5.
J Environ Sci (China) ; 77: 174-188, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30573081

RESUMEN

The presence of fats, oils and greases (FOGs) in wastewater can lead to many problems including blockages. Investigation of a bioaugmentation product, consisting of Bacillus spp., to degrade butter (1%, W/V) and olive oil (1%, V/V) was performed in aerobic batch cultures for 13-day incubation. Gravimetric analysis of the remaining substrates showed slowly degradation of the oil after a 2-day lag, but no degradation of the butter. Addition of a Pseudomonas putida strain CP1 to the Bacillus spp. population promoted rapidly degradation of both fats after 7 days of incubation. High fat accumulation revealed the potential use of the new bacterial mixture for production of added-value compounds. Lipase production only by the Bacillus spp. along with the analysis of the remaining lipids with thin layer chromatography and gas chromatography, suggested that the Bacillus spp. mainly only hydrolyzed the fat. The breakdown products were metabolized by the Pseudomonas putida CP1 performing preferential utilization of unsaturated fatty acids. Investigation of population dynamics using selective plating and a labeled Pseudomonas putida CP1::Tn7-gfp showed domination of the latter. The new mixture performed a successful cooperation with good potential for FOG treatment and an aggregative response desirable to fat degradation in grease traps.


Asunto(s)
Ácidos Grasos/aislamiento & purificación , Ácidos Grasos/metabolismo , Pseudomonas/metabolismo , Animales , Bacillus/metabolismo , Biodegradación Ambiental , Bovinos , Aguas Residuales/química
6.
Appl Microbiol Biotechnol ; 102(6): 2509-2523, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29423634

RESUMEN

Oleaginous microorganisms are able to convert numerous agro-industrial and municipal wastes into storage lipids (single cell oil (SCO)) and are therefore considered as potential biofuel producers. While from an environmental and technological point of view the idea to convert waste materials into fuels is very attractive, the production cost of SCO is not currently competitive to that of conventional oils due to the low productivity of oleaginous microorganisms in combination with the high fermentation cost. Current strategies used to optimize the lipid-accumulating capacity of oleaginous microorganisms include the overexpression of genes encoding for key enzymes implicated in fatty acid and triacylglycerol synthesis, such as ATP-dependent citrate lyase, acetyl-CoA carboxylase, malic enzyme, proteins of the fatty acid synthase complex, glycerol 3-phosphate dehydrogenase and various acyltransferases, and/or the inactivation of genes encoding for enzymes implicated in storage lipid catabolism, such as lipases and acyl-CoA oxidases. Furthermore, blocking, even partially, pathways competitive to lipid biosynthesis (e.g., those involved in the accumulation of storage polysaccharide or organic acid and polyol excretion) can also increase lipid-accumulating ability in oleaginous microorganisms. Methodologies, such as adaptive laboratory evolution, can be included in existing workflows for the generation of strains with improved lipid accumulation capacity. In our opinion, efforts should be focused in the construction of strains with high carbon uptake rates and a reprogrammed coordination of the individual parts of the oleaginous machinery that maximizes carbon flux towards lipogenesis.


Asunto(s)
Bacterias/metabolismo , Biocombustibles , Carbono/metabolismo , Hongos/metabolismo , Residuos Industriales , Metabolismo de los Lípidos , Bacterias/genética , Hongos/genética , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética
7.
Microb Cell Fact ; 16(1): 78, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28482902

RESUMEN

BACKGROUND: Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. RESULTS: Controlling the dissolved oxygen concentration (pO2) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO2-limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13C-based fluxomics levels. CONCLUSION: Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in dual substrate fermentations. This study provides interesting targets for metabolic engineering of this industrial yeast.


Asunto(s)
Ácido Cítrico/metabolismo , Oxígeno/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Citratos/metabolismo , Medios de Cultivo/química , Fermentación , Perfilación de la Expresión Génica , Glucosa/metabolismo , Glicerol/metabolismo , Glioxilatos/metabolismo , Análisis de Flujos Metabólicos , Vía de Pentosa Fosfato/genética , Yarrowia/crecimiento & desarrollo
8.
Appl Microbiol Biotechnol ; 101(19): 7213-7226, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28801795

RESUMEN

Complex biochemical mechanisms are being involved in oleaginous microorganisms during storage lipid and polysaccharide metabolism. Detailed biochemical analyses and monitoring of key enzymes involved in carbon metabolism were performed in Yarrowia lipolytica and Umbelopsis isabellina, which are often used as model oleaginous microorganisms. It was found that during the early oleaginous phase, the carbon source (glucose) was channeled to lipid accumulation, but also to polysaccharide biosynthesis. However, during transition from the early to the late oleaginous phase, glucose was exclusively converted to lipids, while in U. isabellina, but not in Y. lipolytica, an additional conversion of cellular polysaccharides into lipids was observed. After glucose depletion in the growth medium, cellular storage material was degraded either for generating maintenance energy or for supporting further microbial growth, depending on the availability of essential nutrients in the growth medium. We demonstrated that in both microorganisms, reserve lipids were exclusively used as an intra-cellular carbon source in order to generate energy for maintenance purpose. When cellular storage material degradation was related to new cell mass production, a bioconversion of lipids into new lipid-free material, consisting of polysaccharides and proteins, was observed in Y. lipolytica, while new lipid-free material in U. isabellina was richer in proteins. Lipid and polysaccharide remodeling may occur in some cases in both microorganisms. This study revealed some new biochemical features of oleaginous microorganisms that may be crucial for the design of new biotechnological processes, such as the production of bio-molecules of industrial, technological, and medical interest.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Hongos/metabolismo , Metabolismo de los Lípidos , Yarrowia/metabolismo , Medios de Cultivo/química , Concentración de Iones de Hidrógeno
9.
Chem Soc Rev ; 43(8): 2587-627, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24424298

RESUMEN

The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.


Asunto(s)
Biopolímeros/metabolismo , Residuos Industriales/análisis , Polihidroxialcanoatos/metabolismo , Ácido Succínico/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biocombustibles/microbiología , Biopolímeros/química , Reactores Biológicos/microbiología , Celulosa/química , Celulosa/metabolismo , Residuos Industriales/economía , Polihidroxialcanoatos/química , Ácido Succínico/química
10.
Int J Mol Sci ; 16(7): 14832-49, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26140376

RESUMEN

The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.


Asunto(s)
Acetobacter/metabolismo , Biodegradación Ambiental , Biotransformación , Celulosa/metabolismo , Residuos Industriales , Acetobacter/crecimiento & desarrollo , Celulosa/química , Módulo de Elasticidad , Fermentación , Glicerol/metabolismo , Sacarosa/metabolismo , Viscosidad
11.
Microbiology (Reading) ; 160(Pt 4): 807-817, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24509502

RESUMEN

Yarrowia lipolytica, an ascomycete with biotechnological potential, is able to form either yeast cells or hyphae and pseudohyphae in response to environmental conditions. This study shows that the morphology of Y. lipolytica, cultivated in batch cultures on hydrophilic (glucose and glycerol) and hydrophobic (olive oil) media, was not affected by the nature of the carbon source, nor by the nature or the concentration of the nitrogen source. By contrast, dissolved oxygen concentration (DOC) should be considered as the major factor affecting yeast morphology. Specifically, when growth occurred at low or zero DOC the mycelial and/or pseudomycelial forms predominated over the yeast form independently of the carbon and nitrogen sources used. Experimental data obtained from a continuous culture of Y. lipolytica on glycerol, being used as carbon and energy source, demonstrated that the mycelium-to-yeast form transition occurs when DOC increases from 0.1 to 1.5 mg l(-1). DOC also affected the yeast physiology, as the activity of enzymes implicated in lipid biosynthesis (i.e. ATP-citrate lyase, malic enzyme) was upregulated at high DOC whereas the activity of enzymes implicated in glycerol assimilation (such as glycerol dehydrogenase and kinase) remained fundamentally unaffected in the cell-free extract.


Asunto(s)
Oxígeno/metabolismo , Yarrowia/citología , Yarrowia/metabolismo , Carbono/metabolismo , Medios de Cultivo/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glicerol/metabolismo , Hifa/citología , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Nitrógeno/metabolismo , Aceite de Oliva , Aceites de Plantas/metabolismo , Yarrowia/crecimiento & desarrollo
12.
Bioprocess Biosyst Eng ; 37(7): 1385-400, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24366161

RESUMEN

The biosynthetic potential of four basidiomycetes (Agrocybe aegerita, Flammulina velutipes, Ganoderma applanatum and Pleurotus pulmonarius) and one ascomycete (Morchella esculenta) was examined in regard to biomass, intracellular (endopolysaccharides and lipids) and extracellular (exopolysaccharides) compounds' production in liquid media with glucose as substrate, in static and agitated cultures. Exopolysaccharides' production presented significant negative correlation with biomass, endopolysaccharides and lipids, while biomass was positively related to the production of endopolysaccharides and lipids. Maximum values of biomass, endo- and exo-polysaccharides obtained were quite impressive: P. pulmonarius produced 22.5 g/L of biomass, A. aegerita 60.4 % (w/w) of endopolysaccharides and F. velutipes 1.2 g/L of exopolysaccharides. Polysaccharides and lipids synthesized at the early growth stages were subjected to degradation as the fermentation proceeded. Mycelial lipids of all strains were highly unsaturated, dominated by linoleic acid, whereas glucose was the main building block of endopolysaccharides. The ability of the examined mushroom fungi to synthesize in high quantities biomass and polysaccharides, products with biotechnological and medicinal interest, renders these fungi as potential candidates in sugar-based bio-refineries.


Asunto(s)
Agaricales/metabolismo , Hongos/metabolismo , Glucosa/química , Agaricales/crecimiento & desarrollo , Biomasa , Biotecnología/métodos , Fermentación , Hongos/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Lípidos/biosíntesis , Monosacáridos/biosíntesis , Micelio/crecimiento & desarrollo , Polisacáridos/biosíntesis
13.
Foods ; 13(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928833

RESUMEN

The present work examined the production of single-cell protein (SCP) by a newly isolated strain of Kluyveromyces marxianus EXF-5288 under increased lactose concentration of deproteinized cheese whey (DCW) and different temperatures (in °C: 20.0, 25.0, 30.0 and 35.0). To the best of the authors' knowledge, this is the first report examining the ability of Kluyveromyces marxianus species to produce SCP at T = 20.0 °C. Different culture temperatures led to significant differences in the strain's growth, while maximum biomass and SCP production (14.24 ± 0.70 and 6.14 ± 0.66 g/L, respectively) were observed in the cultivation of K. marxianus strain EXF-5288 in shake-flask cultures at T = 20.0 °C. Increased DCW lactose concentrations (35.0-100.0 g/L) led to increased ethanol production (Ethmax = 35.5 ± 0.2 g/L), suggesting that K. marxianus strain EXF-5288 is "Crabtree-positive". Batch-bioreactor trials shifted the strain's metabolism to alcoholic fermentation, favoring ethanol production. Surprisingly, K. marxianus strain EXF-5288 was able to catabolize the produced ethanol under limited carbon presence in the medium. The dominant amino acids in SCP were glutamate (15.5 mg/g), aspartic acid (12.0 mg/g) and valine (9.5 mg/g), representing a balanced nutritional profile.

14.
Environ Sci Pollut Res Int ; 31(24): 35483-35497, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727974

RESUMEN

The valorization of renewable feedstock to produce a plethora of value-added products could promote the transition towards a circular bioeconomy. This study presents the development of cascade processes to bioconvert spent coffee grounds (SCGs) into microbial oil and carotenoids employing sustainable practices. The stepwise recovery of crude phenolic extract and coffee oil was carried out using green or recyclable solvents, i.e., aqueous ethanol and hexane. Palmitic acid (43.3%) and linoleic acid (38.9%) were the major fatty acids in the oil fraction of SCGs. The LC-MS analysis of crude phenolic extracts revealed that chlorogenic acid dominated (45.7%), while neochlorogenic acid was also detected in substantial amounts (24.0%). SCGs free of coffee oil and phenolic compounds were subjected to microwave-assisted pretreatment under different irradiations and solvents to enhance subsequent enzymatic saccharification. Microwave/water pretreatment at 400 W, followed by enzymatic hydrolysis with proteases, hemicellulases, and cellulases, at 50 g/L initial SCGs, led to satisfying overall yields of cellulose (75.4%), hemicellulose (50.3%), and holocellulose (55.3%). Mannan was the most extractable polysaccharide followed by galactan and arabinan. SCGs hydrolysate was used in fed-batch bioreactor fermentations with Rhodosporidium toruloides to produce 24.0 g/L microbial oil and carotenoids of 432.9 µg/g biomass.


Asunto(s)
Carotenoides , Café , Fermentación , Café/química
15.
J Fungi (Basel) ; 10(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38392802

RESUMEN

Cunninghamella elegans NRRL-1393 is an oleaginous fungus able to synthesize and accumulate unsaturated fatty acids, amongst which the bioactive gamma-linolenic acid (GLA) has potential anti-cancer activities. C. elegans was cultured in shake-flask nitrogen-limited media with either glycerol or glucose (both at ≈60 g/L) employed as the sole substrate. The assimilation rate of both substrates was similar, as the total biomass production reached 13.0-13.5 g/L, c. 350 h after inoculation (for both instances, c. 27-29 g/L of substrate were consumed). Lipid production was slightly higher on glycerol-based media, compared to the growth on glucose (≈8.4 g/L vs. ≈7.0 g/L). Lipids from C. elegans grown on glycerol, containing c. 9.5% w/w of GLA, were transformed into fatty acid lithium salts (FALS), and their effects were assessed on both human normal and cancerous cell lines. The FALS exhibited cytotoxic effects within a 48 h interval with an IC50 of about 60 µg/mL. Additionally, a suppression of migration was shown, as a significant elevation of oxidative stress levels, and the induction of cell death. Elementary differences between normal and cancer cells were not shown, indicating a generic mode of action; however, oxidative stress level augmentation may increase susceptibility to anticancer drugs, improving chemotherapy effectiveness.

16.
Microorganisms ; 11(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36838496

RESUMEN

Valorization of lignocellulosic biomass, such as Spent Mushroom Substrate (SMS), as an alternative substrate for biogas production could meet the increasing demand for energy. In view of this, the present study aimed at the biotechnological valorization of SMS for biogas production. In the first part of the study, two SMS chemical pretreatment processes were investigated and subsequently combined with thermal treatment of the mentioned waste streams. The acidic chemical hydrolysate derived from the hydrothermal treatment, which yielded in the highest concentration of free sugars (≈36 g/100 g dry SMS, hydrolysis yield ≈75% w/w of holocellulose), was used as a potential feedstock for biomethane production in a laboratory bench-scale improvised digester, and 52 L biogas/kg of volatile solids (VS) containing 65% methane were produced in a 15-day trial of anaerobic digestion. As regards the alkaline hydrolysate, it was like a pulp due to the lignocellulosic matrix disruption, without releasing additional sugars, and the biogas production was delayed for several days. The biogas yield value was 37 L/kg VS, and the methane content was 62%. Based on these results, it can be concluded that SMS can be valorized as an alternative medium employed for anaerobic digestion when pretreated with both chemical and hydrothermal hydrolysis.

17.
Microorganisms ; 11(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513034

RESUMEN

Sugar-rich waste streams, generated in very high quantities worldwide, constitute an important source of environmental pollution. Their eco-friendly conversions into a plethora of added-value compounds through the use of microbial fermentations is currently a very "hot" scientific topic. The aim of this study, was to assess the potential of single cell oil (SCO), microbial mass and citric acid (CA) production by non-conventional yeast strains growing on expired ("waste") glucose. Six yeast strains (viz. Rhodosporidium toruloides DSM 4444, Rhodotorula glutinis NRRL YB-252, R. toruloides NRRL Y-27012, Yarrowia lipolytica LFMB Y-20, Y. lipolytica ACA-DC 50109 and Lipomyces starkeyi DSM 70296) were initially grown in shake flasks with expired glucose used as substrate under nitrogen limitation, in order to "boost" the cellular metabolism towards the synthesis of SCO and CA, and their growth response was quantitatively evaluated. Initial glucose concentration (Glc0) was adjusted at c. 50 g/L. Besides Y. lipolytica, all other yeast strains produced noticeable SCO quantities [lipid in dry cell weight (DCW) ranging from 25.3% w/w to 55.1% w/w]. Lipids of all yeasts contained significant quantities of oleic acid, being perfect candidates for the synthesis of 2nd generation biodiesel. The highest DCW production (=13.6 g/L) was obtained by L. starkeyi DSM 70296, while both Y. lipolytica strains did not accumulate noticeable lipid quantities, but produced non-negligible CA amounts. The most promising CA-producing strain, namely Y. lipolytica ACA-DC 50109 was further studied in stirred-tank bioreactor systems, while the very promising DCW- and SCO-producing L. starkeyi DSM 70296 was further studied in shake flasks. Both strains were grown on media presenting higher Glc0 concentrations and the same initial nitrogen quantity as previously. Indeed, L. starkeyi grown at Glc0 = 85 g/L, produced DCWmax = 34.0 g/L, that contained lipid =34.1% w/w (thus SCO was =11.6 g/L). The strain ACA-DC 50109 in stirred tank bioreactor with Glc0 ≈ 105 g/L produced CA up to 46 g/L (yield of CA produced on glucose consumed; YCA/Glc ≈ 0.45 g/g). Finally, in fed-batch bioreactor experiment, the significant CA quantity of 82.0 g/L (YCA/Glc = 0.50 g/g) was recorded. Concluding, "waste" glucose proved to be a suitable substrate for a number of non-conventional yeast strains. Y. lipolytica ACA-DC 50109 produced significant quantities of CA while L. starkeyi DSM 70296 was a very interesting DCW- and SCO-producing candidate. These strains can be used as potential cell factories amenable to convert glucose-based residues into the mentioned metabolic compounds, that present high importance for food, chemical and biofuel facilities.

18.
Microorganisms ; 11(6)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37374926

RESUMEN

A study on the ability of new microbial strains to assimilate biodiesel-derived glycerol at low purity (75% w/w) and produce extra-cellular platform chemical compounds of major interest was carried out. After screening several bacterial strains under different fermentation conditions (e.g., pH, O2 availability, glycerol purity), three of the screened strains stood out for their high potential to produce valued-added products such as 2,3-butanediol (BDO), 1,3-propanediol (PDO) and ethanol (EtOH). The results indicate that under aerobic conditions, Klebsiella oxytoca ACA-DC 1581 produced BDO in high yield (YBDO/Gly = 0.46 g/g, corresponding to 94% of the maximum theoretical yield; Ymt) and titer, while under anaerobic conditions, Citrobacter freundii NRRL-B 2645 and Enterobacter ludwigii FMCC-204 produced PDO (YPDO/Gly = 0.56 g/g, 93% of Ymt) and EtOH (YEtOH/Gly = 0.44 g/g, 88% of Ymt), respectively. In the case of C. freundii, the regulation of pH proved to be mandatory, due to lactic acid production and a subsequent drop of pH that resulted in fermentation ceasing. In the fed-batch culture of K. oxytoca, the BDO maximum titer reached almost 70 g/L, the YBDO/Gly and the mean productivity value (PrBDO) were 0.47 g/g and 0.4 g/L/h, respectively, while no optimization was imposed. The final BDO production obtained by this wild strain (K. oxytoca) is among the highest in the international literature, although the bioprocess requires optimization in terms of productivity and total cost. In addition, for the first time in the literature, a strain from the species Hafnia alvei (viz., Hafnia alvei ACA-DC 1196) was reported as a potential BDO producer. The strains as well as the methodology proposed in this study can contribute to the development of a biorefinery that complements the manufacture of biofuels with high-value biobased chemicals.

19.
Microorganisms ; 11(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764087

RESUMEN

The global market for citric acid (CA) is one of the biggest and fastest expanding markets in the food industry. The CA production employing microbial bioprocessing with efficient GRAS strains and renewable waste streams is in line with the European Union binding targets for resource efficiency, sustainable consumption-production, and low-carbon technologies. In this work, the potential of three novel wild-type Yarrowia lipolytica strains (namely LMBF Y-46, LMBF Y-47 and ACA-YC 5033) regarding the production of CA and other valuable metabolites was tested on glucose-based media, and the most promising amongst the screened strains (viz. the strain ACA-YC 5033) was cultured on glucose-based media, in which part of the fermentation water had been replaced by olive-mill wastewaters (OMWs) in a novel approach of simultaneous OMW valorization and bioremediation. In the first part of this study, the mentioned strains were cultured under nitrogen-limited conditions with commercial (low-cost) glucose employed as a sole carbon source in shake-flask cultures at an initial concentration (S0) ≈ of 50 g/L. Variable quantities of secreted citric acid (CA) and intra-cellular compounds (viz. polysaccharides and lipids) were produced. All strains did not accumulate significantly high lipid quantities (i.e., maximum lipid in dry cell weight [DCW] values ≈30% w/w were noted) but produced variable CA quantities. The most promising strain, namely ACA-YC 5033, produced CA up to c. 24 g/L, with a yield of CA produced on glucose consumed (YCA/S) ≈ 0.45 g/g. This strain in stirred tank bioreactor experiments, at remarkably higher S0 concentrations (≈110 g/L) and the same initial nitrogen quantity added into the medium, produced notably higher CA quantities, up to 57 g/L (YCA/S ≈ 0.52 g/g). The potential of the same strain (ACA-YC 5033) to bioremediate OMWs and to produce value-added compounds, i.e., yeast cells, CA, and intra-cellular metabolites, was also assessed; under nitrogen-limited conditions in which OMWs had partially replaced tap water and significant glucose concentrations had been added (S0 ≈ 100 g/L, simultaneous molar ratio C/N ≈ 285 g/g, initial phenolic compounds [Phen0] adjusted to ≈1.0 g/L; these media were similar to the OMWs generated from the traditional press extraction systems) the notable CA quantity of 60.2 g/L with simultaneous YCA/S = 0.66 g/g, was obtained in shake flasks, together with satisfactory phenolic compounds removal (up to 19.5% w/w) and waste decolorization (up to 47.0%). Carbon-limited conditions with Phen0 ≈ 1.0 g/L favored the production of yeast DCW (up to 25.3 g/L), with equally simultaneous interesting phenolic compounds and color removal. The fatty acid profile showed that cellular lipids were highly unsaturated with oleic, linoleic and palmitoleic acids, accounting for more than 80% w/w. This study proposed an interesting approach that could efficiently address the biotreatment of toxic effluents and further convert them into circular-oriented bioproducts.

20.
Appl Microbiol Biotechnol ; 95(1): 13-27, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22581036

RESUMEN

The rapid development of biodiesel production technology has led to the generation of tremendous quantities of glycerol wastes, as the main by-product of the process. Stoichiometrically, it has been calculated that for every 100 kg of biodiesel, 10 kg of glycerol are produced. Based on the technology imposed by various biodiesel plants, glycerol wastes may contain numerous kinds of impurities such as methanol, salts, soaps, heavy metals, and residual fatty acids. This fact often renders biodiesel-derived glycerol unprofitable for further purification. Therefore, the utilization of crude glycerol though biotechnological means represents a promising alternative for the effective management of this industrial waste. This review summarizes the effect of various impurities-contaminants that are found in biodiesel-derived crude glycerol upon its conversion by microbial strains in biotechnological processes. Insights are given concerning the technologies that are currently applied in biodiesel production, with emphasis to the impurities that are added in the composition of crude glycerol, through each step of the production process. Moreover, extensive discussion is made in relation with the impact of the nature of impurities upon the performances of prokaryotic and eukaryotic microorganisms, during crude glycerol bioconversions into a variety of high added-value metabolic products. Finally, aspects concerning ways of crude glycerol treatment for the removal of inhibitory contaminants as reported in the literature are given and comprehensively discussed.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Glicerol/química , Bacterias/clasificación , Bacterias/metabolismo , Eucariontes/clasificación , Eucariontes/metabolismo , Fermentación , Glicerol/metabolismo , Residuos Industriales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA