Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Sci ; 127(Pt 1): 250-7, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24190882

RESUMEN

Regulation of the size and abundance of membrane compartments is a fundamental cellular activity. In Saccharomyces cerevisiae, disruption of the ADP-ribosylation factor 1 (ARF1) gene yields larger and fewer Golgi cisternae by partially depleting the Arf GTPase. We observed a similar phenotype with a thermosensitive mutation in Nmt1, which myristoylates and activates Arf. Therefore, partial depletion of Arf is a convenient tool for dissecting mechanisms that regulate Golgi structure. We found that in arf1Δ cells, late Golgi structure is particularly abnormal, with the number of late Golgi cisternae being severely reduced. This effect can be explained by selective changes in cisternal maturation kinetics. The arf1Δ mutation causes early Golgi cisternae to mature more slowly and less frequently, but does not alter the maturation of late Golgi cisternae. These changes quantitatively explain why late Golgi cisternae are fewer in number and correspondingly larger. With a stacked Golgi, similar changes in maturation kinetics could be used by the cell to modulate the number of cisternae per stack. Thus, the rates of processes that transform a maturing compartment can determine compartmental size and copy number.


Asunto(s)
Factor 1 de Ribosilacion-ADP/genética , Regulación Fúngica de la Expresión Génica , Aparato de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factor 1 de Ribosilacion-ADP/deficiencia , Transporte Biológico , Aparato de Golgi/ultraestructura , Mutación , Ácidos Mirísticos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Cell Biol ; 218(5): 1582-1601, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30858194

RESUMEN

Golgi cisternal maturation has been visualized by fluorescence imaging of individual cisternae in the yeast Saccharomyces cerevisiae, but those experiments did not track passage of a secretory cargo. The expectation is that a secretory cargo will be continuously present within maturing cisternae as resident Golgi proteins arrive and depart. We tested this idea using a regulatable fluorescent secretory cargo that forms ER-localized aggregates, which dissociate into tetramers upon addition of a ligand. The solubilized tetramers rapidly exit the ER and then transit through early and late Golgi compartments before being secreted. Early Golgi cisternae form near the ER and become loaded with the secretory cargo. As predicted, cisternae contain the secretory cargo throughout the maturation process. An unexpected finding is that a burst of intra-Golgi recycling delivers additional secretory cargo molecules to cisternae during the early-to-late Golgi transition. This recycling requires the AP-1 adaptor, suggesting that AP-1 can recycle secretory cargo proteins as well as resident Golgi proteins.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción AP-1/metabolismo , Transporte Biológico , Microscopía Fluorescente , Saccharomyces cerevisiae/crecimiento & desarrollo
3.
Methods Mol Biol ; 1496: 1-11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27631997

RESUMEN

Yeast cells are well suited to visualizing organelles by 4D confocal microscopy. Typically, one or more cellular compartments are labeled with a fluorescent protein or dye, and a stack of confocal sections spanning the entire cell volume is captured every few seconds. Under appropriate conditions, organelle dynamics can be observed for many minutes with only limited photobleaching. Images are captured at a relatively low signal-to-noise ratio and are subsequently processed to generate movies that can be analyzed and quantified. Here, we describe methods for acquiring and processing 4D data using conventional scanning confocal microscopy.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Orgánulos , Saccharomyces cerevisiae/citología , Microscopía Confocal/métodos
4.
Cell Logist ; 6(3): e1204848, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27738551

RESUMEN

FK506-binding protein (FKBP) is a monomer that binds to FK506, rapamycin, and related ligands. The F36M substitution, in which Phe36 in the ligand-binding pocket is changed to Met, leads to formation of antiparallel FKBP dimers, which can be dissociated into monomers by ligand binding. This FKBP(M) mutant has been employed in the mammalian secretory pathway to generate aggregates that can be dissolved by ligand addition to create cargo waves. However, when testing this approach in yeast, we found that dissolution of FKBP(M) aggregates was inefficient. An improved reversibly dimerizing FKBP formed aggregates that dissolved more readily. This FKBP(L,V) mutant carries the F36L mutation, which increases the affinity of ligand binding, and the I90V mutation, which accelerates ligand-induced dissociation of the dimers. The FKBP(L,V) mutant expands the utility of reversibly dimerizing FKBP.

5.
Elife ; 42015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26709839

RESUMEN

COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteína Coat de Complejo I/metabolismo , Aparato de Golgi/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/fisiología , Microscopía Fluorescente , Microscopía por Video , Transporte de Proteínas
6.
Curr Opin Cell Biol ; 29: 74-81, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24840895

RESUMEN

Recent work supports the idea that cisternae of the Golgi apparatus can be assigned to three classes, which correspond to discrete stages of cisternal maturation. Each stage has a unique pattern of membrane traffic. At the first stage, cisternae form in association with the ER at multifunctional membrane assembly stations. At the second stage, cisternae synthesize carbohydrates while exchanging material via COPI vesicles. At the third stage, cisternae of the trans-Golgi network segregate into domains and produce transport carriers with the aid of specific lipids and the actin cytoskeleton. These processes are coordinated by cascades of Rab and Arf/Arl GTPases.


Asunto(s)
Aparato de Golgi/metabolismo , Animales , Transporte Biológico , Carbohidratos/biosíntesis , GTP Fosfohidrolasas/metabolismo , Humanos
7.
Mol Biol Cell ; 24(21): 3406-19, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24006484

RESUMEN

During the budding of coat protein complex II (COPII) vesicles from transitional endoplasmic reticulum (tER) sites, Sec16 has been proposed to play two distinct roles: negatively regulating COPII turnover and organizing COPII assembly at tER sites. We tested these ideas using the yeast Pichia pastoris. Redistribution of Sec16 to the cytosol accelerates tER dynamics, supporting a negative regulatory role for Sec16. To evaluate a possible COPII organization role, we dissected the functional regions of Sec16. The central conserved domain, which had been implicated in coordinating COPII assembly, is actually dispensable for normal tER structure. An upstream conserved region (UCR) localizes Sec16 to tER sites. The UCR binds COPII components, and removal of COPII from tER sites also removes Sec16, indicating that COPII recruits Sec16 rather than the other way around. We propose that Sec16 does not in fact organize COPII. Instead, regulation of COPII turnover can account for the influence of Sec16 on tER sites.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Pichia/metabolismo , Sitios de Unión/genética , Citosol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Microscopía Fluorescente , Mutación , Pichia/genética , Unión Proteica , Transporte de Proteínas/genética , Técnicas del Sistema de Dos Híbridos
8.
FEBS Lett ; 583(23): 3746-51, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19879270

RESUMEN

The Golgi apparatus is known to modify and sort newly synthesized secretory proteins. However, fundamental mysteries remain about the structure, operation, and dynamics of this organelle. Important insights have emerged from studying the Golgi in yeasts. For example, yeasts have provided direct evidence for Golgi cisternal maturation, a mechanism that is likely to be broadly conserved. Here, we highlight features of the yeast Golgi as well as challenges that lie ahead.


Asunto(s)
Aparato de Golgi/metabolismo , Saccharomyces cerevisiae/citología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proliferación Celular , Retículo Endoplásmico/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
Mol Cell Biol ; 28(10): 3336-43, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18332110

RESUMEN

In the budding yeast Saccharomyces cerevisiae, mutations in the essential gene CDC1 cause defects in Golgi inheritance and actin polarization. However, the biochemical function of Cdc1p is unknown. Previous work showed that cdc1 mutants accumulate intracellular Ca(2+) and display enhanced sensitivity to the extracellular Mn(2+) concentration, suggesting that Cdc1p might regulate divalent cation homeostasis. By contrast, our data indicate that Cdc1p is a Mn(2+)-dependent protein that can affect Ca(2+) levels. We identified a cdc1 allele that activates Ca(2+) signaling but does not show enhanced sensitivity to the Mn(2+) concentration. Furthermore, our studies show that Cdc1p is an endoplasmic reticulum-localized transmembrane protein with a putative phosphoesterase domain facing the lumen. cdc1 mutant cells accumulate an unidentified phospholipid, suggesting that Cdc1p may be a lipid phosphatase. Previous work showed that deletion of the plasma membrane Ca(2+) channel Cch1p partially suppressed the cdc1 growth phenotype, and we find that deletion of Cch1p also suppresses the Golgi inheritance and actin polarization phenotypes. The combined data fit a model in which the cdc1 mutant phenotypes result from accumulation of a phosphorylated lipid that activates Ca(2+) signaling.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Retículo Endoplásmico/metabolismo , Genes Fúngicos , Genes Reporteros , Aparato de Golgi/metabolismo , Operón Lac , Manganeso/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutación , Fenotipo , Fosfatidato Fosfatasa/química , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Fosfolípidos/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Nat Rev Microbiol ; 5(11): 839-51, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17938627

RESUMEN

All cells must traffic proteins across their membranes. This essential process is responsible for the biogenesis of membranes and cell walls, motility and nutrient scavenging and uptake, and is also involved in pathogenesis and symbiosis. The translocase is an impressively dynamic nanomachine that is the central component which catalyses transmembrane crossing. This complex, multi-stage reaction involves a cascade of inter- and intramolecular interactions that select, sort and target polypeptides to the membrane, and use energy to promote the movement of these polypeptides across--or their lateral escape and integration into--the phospholipid bilayer, with high fidelity and efficiency. Here, we review the most recent data on the structure and function of the translocase nanomachine.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA