Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecol Evol ; 12(5): e8911, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646317

RESUMEN

We investigated the population dynamics of a highly clonal marine angiosperm, Cymodocea nodosa, in the eastern Mediterranean Sea, to identify the historical dynamics, demography, and connectivity of the species in the area. Eighteen microsatellite loci were used in conjunction with coalescent methods to investigate the genetic structure and demographic history of C. nodosa meadows. Approximate Bayesian computation (ABC) modeling was used to examine the pattern of divergence over time in the context of environmental change over the course of the Quaternary period. ABC analysis revealed an initial split of the C. nodosa populations between the north-western, northern, and north-eastern Aegean Sea during the Pleistocene epoch, followed by a more recent divergence of the north-western population and the central-western part of the Aegean Sea. According to the results, the most parsimonious historical scenario is that of a pervasive genetic signature of the effects of the drop in sea level during the Pleistocene epoch. This scenario supports the isolation of the north-western, north, and north-eastern area, and the subsequent recolonization after post-glaciation sea level rise that may explain the north-western differentiation as well present-day detected dispersion of C. nodosa.

2.
Mar Environ Res ; 165: 105222, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33461107

RESUMEN

In the context of general ecosystem monitoring of the Greek coastal marine environment, a total of 22 descriptors of Posidonia oceanica meadows were studied in 69 study sites. Spatial variation of P. oceanica meadows' features in relation to specific environmental factors (i.e., light, physical exposure, temperature, and nutrients) controlling their dynamics was assessed in three sub-ecoregions of the Hellenic seas (Eastern Ionian, North Aegean, and South Aegean). The studied meadows differentiated by exhibiting varying growth patterns at both the local and sub-ecoregional scale. Significant differences in morphological and demographic descriptors were observed for meadows of the N. Aegean Sea as compared to those of the S. Aegean and the Eastern Ionian Seas. Light limitation was determined as the main driver differentiating the P. oceanica meadows' distribution (i.e., lower limit depth), demography (i.e., shoot density, meadow cover) and shoots' biometry (i.e., shoot length, shoot leaf surface and leaf biomass) along the mainland coastal zone of the N. Aegean Sea. Considering the projected decline of P. oceanica in the face of increasing natural and human impacts, this study offers a crucial ecological baseline that can enhance our understanding of P. oceanica meadows' trends, against which the efficiency of conservation plans and management actions may be monitored.


Asunto(s)
Alismatales , Ecosistema , Ambiente , Grecia , Humanos , Mar Mediterráneo , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA