Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Plant Biol ; 20(1): 37, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969116

RESUMEN

BACKGROUND: Root-to-shoot translocation of zinc (Zn) and cadmium (Cd) depends on the concentrations of both metals in the medium. A previous study on tobacco (Nicotiana tabacum) pointed to the contribution of NtZIP1, NtZIP2, NtZIP4 and NtIRT1-like in the regulation of this phenomenon. To learn more, Zn and Cd accumulation, root/shoot distribution and the expression of ZIP genes were investigated in the apical, middle and basal root parts. RESULTS: We show that Zn/Cd status-dependent root-shoot distribution of both metals was related to distinct metal accumulation in root parts. At low Zn and Cd in the medium, the apical part contained the highest metal level; at higher concentrations, the middle and basal parts were the major sink for excess metal. The above were accompanied by root part-specific expression pattern modifications of ZIPs (NtZIP1-like, NtZIP2, NtZIP4A/B, NtZIP5A/B, NtZIP5-like, NtZIP8, NtZIP11, NtIRT1, and NtIRT1-like) that fell into four categories with respect to the root part. Furthermore, for lower Zn/Cd concentrations changes were noted for NtZIP5A/B and NtZIP5-like only, but at higher Zn and Cd levels for NtZIP1-like, NtZIP5-like, NtZIP8, NtZIP11, NtIRT1, and NtIRT1-like. NtZIP1, here renamed to NtZIP5B, was cloned and characterized. We found that it was a zinc deficiency-inducible transporter involved in zinc and cadmium uptake from the soil solution primarily by the middle root part. CONCLUSIONS: We conclude that regulation of the longitudinal distribution of Zn and Cd is highly specific, and that the apical, middle and basal root parts play distinct roles in Zn/Cd status-dependent control of metal translocation efficiency to shoots, including the stimulation of Zn translocation to shoots in the presence of Cd. These results provide new insight into the root part-specific unique role of NtZIP5B and other ZIP genes in the longitudinal distribution of zinc and cadmium and their contribution to the regulation of root-to-shoot translocation.


Asunto(s)
Cadmio/metabolismo , Nicotiana , Raíces de Plantas/metabolismo , Factores de Transcripción , Zinc/metabolismo , Transporte Biológico/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant J ; 95(6): 988-1003, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29932267

RESUMEN

The plant metal tolerance protein family (MTP) includes 12 members that have been classified into three phylogenetically different subgroups - Zn-cation diffusion facilitator (CDF), Fe/Zn-CDF and Mn-CDF - based on their putative metal specificity. To date, only members belonging to the Zn-CDF or Mn-CDF group have been characterized functionally. The plant Fe/Zn-CDF subgroup includes two proteins, MTP6 and MTP7, but their function and metal specificity have not been confirmed. In this study we showed that cucumber CsMTP7 is a highly specific mitochondrial Fe importer that is able to confer yeast tolerance to Fe excess through increased accumulation of Fe in the mitochondria. We also demonstrated that CsMTP7 contributes to the increased accumulation of Fe in the mitochondria of Arabidopsis thaliana protoplasts. The transcripts and mitochondrial levels of CsMTP7 and ferritin - the iron-storing protein - are significantly increased in cucumber roots in response to Fe excess. This finding suggests that CsMTP7 and ferritin work in concert to accumulate Fe in plant mitochondria. As genes that encode orthologous proteins have been identified in phylogenetically distant organisms, including Archaea, cyanobacteria, humans and plants, but not in yeast, we concluded that the MTP7-mediated mitochondrial Fe accumulation may be conserved in the species, and express mitochondrial ferritin for mitochondrial Fe storage.


Asunto(s)
Cucumis sativus/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis , Cucumis sativus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN
3.
J Biol Chem ; 290(25): 15717-15729, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25963145

RESUMEN

Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu(+) (Km ∼1 or 0.5 µM, respectively) and similar affinity to Ag(+) (Km ∼2.5 µM). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu(+) transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess.


Asunto(s)
Adenosina Trifosfatasas , Cucumis sativus , Membranas Intracelulares , Proteínas de Transporte de Membrana , Proteínas de Plantas , Vacuolas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Cobre/metabolismo , Cucumis sativus/enzimología , Cucumis sativus/genética , Membranas Intracelulares/enzimología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacuolas/enzimología , Vacuolas/genética
4.
Plant J ; 84(6): 1045-58, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26485215

RESUMEN

Members of the plant metal tolerance protein (MTP) family have been classified into three major groups - Zn-CDF, Mn-CDF and Zn/Fe-CDF - however, the selectivity of most of the MTPs has not been confirmed yet. Cucumber gene CsMTP9 encoding a putative CDF transporter homologous to members of the Mn-CDF cluster is expressed exclusively in roots. The relative abundance of CsMTP9 transcript and protein in roots is significantly increased under Mn excess and Cd. Immunolocalization with specific antibodies revealed that CsMTP9 is a plasma membrane transporter that localizes to the inner PM domain of root endodermal cells. The plasma membrane localization of CsMTP9 was confirmed by the expression of the fusion proteins of GFP (green fluorescent protein) and CsMTP9 in yeast and protoplasts prepared from Arabidopsis cells. In yeast, CsMTP9 transports Mn(2+) and Cd(2+) via a proton-antiport mechanism with an apparent Km values of approximately 10 µm and 2.5 µm for Mn(2+) and Cd(2+) , respectively. In addition, CsMTP9 expression in yeast rescues the Mn- and Cd-hypersensitive phenotypes through the enhanced efflux of Mn(2+) and Cd(2+) from yeast cells. Similarly, the overexpression of CsMTP9 in A. thaliana confers increased resistance of plants to Mn excess and Cd but not to other heavy metals and leads to the enhanced translocation of manganese and cadmium from roots to shoots. These findings indicate that CsMTP9 is a plasma membrane H(+) -coupled Mn(2+) and Cd(2+) antiporter involved in the efflux of manganese and cadmium from cucumber root cells by the transport of both metals from endodermis into vascular cylinder.


Asunto(s)
Antiportadores/metabolismo , Cadmio/metabolismo , Cucumis sativus/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Manganeso/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Antiportadores/genética , Transporte Biológico/fisiología , Cadmio/toxicidad , Membrana Celular , Manganeso/toxicidad , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Saccharomyces/metabolismo
6.
Plant Cell Environ ; 38(6): 1127-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25210955

RESUMEN

P1B-ATPases (heavy metal ATPases, HMAs) constitute a multigenic subfamily of P-ATPases involved in the transport of monovalent and divalent heavy metals in plant cells. Here, we present the organization of genes encoding the HMA family in the cucumber genome and report the function and biochemical properties of two cucumber proteins homologous to the HMA2-4-like plant HMAs. Eight genes encoding putative P1B -ATPases were identified in the cucumber genome. Among them, CsHMA3 was predominantly expressed in roots and up-regulated by Pb, Zn and Cd excess, whereas the CsHMA4 transcript was most abundant in roots and flowers of cucumber plants, and elevated under Pb and Zn excess. Expression of CsHMA3 in Saccharomyces cerevisiae enhanced yeast tolerance to Cd and Pb, whereas CsHMA4 conferred increased resistance of yeast cells to Cd and Zn. Immunostaining with specific antibodies raised against cucumber proteins revealed tonoplast localization of CsHMA3 and plasma membrane localization of CsHMA4 in cucumber root cells. Kinetic studies of CsHMA3 and CsHMA4 in yeast membranes indicated differing heavy metal cation affinities of these two proteins. Altogether, the results suggest an important role of CsHMA3 and CsHMA4 in Cd and Pb detoxification and Zn homeostasis in cucumber cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cucumis sativus/enzimología , Metales Pesados/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Bases , Cadmio/metabolismo , Membrana Celular/enzimología , Cucumis sativus/genética , Cucumis sativus/metabolismo , Flores/enzimología , Genes de Plantas/genética , Homeostasis , Plomo/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Plantas Modificadas Genéticamente/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinc/metabolismo
7.
J Exp Bot ; 66(3): 1001-15, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25422498

RESUMEN

Metal-tolerance proteins (MTPs) are divalent cation transporters that have been shown to be essential for metal homeostasis and tolerance in model plants and hyperaccumulators. Due to the lack of genomic resources, studies on MTPs in cultivated crops are lacking. Here, we present the first functional characterization of genes encoding cucumber proteins homologous to MTP1 and MTP4 transporters. CsMTP1 expression was ubiquitous in cucumber plants, whereas CsMTP4 mRNA was less abundant and was not detected in the generative parts of the flowers. When expressed in yeast, CsMTP1 and CsMTP4 were able to complement the hypersensitivity of mutant strains to Zn and Cd through the increased sequestration of metals within vacuoles using the transmembrane electrochemical gradient. Both proteins formed oligomers at the vacuolar membranes of yeast and cucumber cells and localized in Arabidopsis protoplasts, consistent with their function in vacuolar Zn and Cd sequestration. Changes in the abundance of CsMTP1 and CsMTP4 transcripts and proteins in response to elevated Zn and Cd, or to Zn deprivation, suggested metal-induced transcriptional, translational, and post-translational modifications of protein activities. The differences in the organ expression and affinity of both proteins to Zn and Cd suggested that CsMTP1 and CsMTP4 may not be functionally redundant in cucumber cells.


Asunto(s)
Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Cucumis sativus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Contaminantes del Suelo/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cucumis sativus/metabolismo , Homeostasis/efectos de los fármacos , Datos de Secuencia Molecular , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Vacuolas/metabolismo
8.
J Exp Bot ; 65(18): 5367-84, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25039075

RESUMEN

Cation diffusion facilitator (CDF) proteins are ubiquitous divalent cation transporters that have been proved to be essential for metal homeostasis and tolerance in Archaebacteria, Bacteria, and Eukaryota. In plants, CDFs are designated as metal tolerance proteins (MTPs). Due to the lack of genomic resources, studies on MTPs in other plants, including cultivated crops, are lacking. Here, the identification and organization of genes encoding members of the MTP family in cucumber are described. The first functional characterization of a cucumber gene encoding a member of the Mn-CDF subgroup of CDF proteins, designated as CsMTP8 based on the highest homology to plant MTP8, is also presented. The expression of CsMTP8 in Saccharomyces cerevisiae led to increased Mn accumulation in yeast cells and fully restored the growth of mutants hypersensitive to Mn in Mn excess. Similarly, the overexpression of CsMTP8 in Arabidopsis thaliana enhanced plant tolerance to high Mn in nutrition media as well as the accumulation of Mn in plant tissues. When fused to green fluorescent protein (GFP), CsMTP8 localized to the vacuolar membranes in yeast cells and to Arabidopsis protoplasts. In cucumber, CsMTP8 was expressed almost exclusively in roots, and the level of gene transcript was markedly up-regulated or reduced under elevated Mn or Mn deficiency, respectively. Taken together, the results suggest that CsMTP8 is an Mn transporter localized in the vacuolar membrane, which participates in the maintenance of Mn homeostasis in cucumber root cells.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Cucumis sativus/metabolismo , Manganeso/farmacología , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Cucumis sativus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética
9.
J Exp Bot ; 62(14): 4903-16, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21705389

RESUMEN

The strategies developed by plants to avoid the toxicity of cadmium (Cd) and other heavy metals involve active sequestration of metals into the apoplast and vacuoles. The protein systems excluding heavy metals from the cell cytosol localize to the plasma membrane and tonoplast and are energized either by ATP or by the electrochemical gradient generated by H(+)-ATPase or by V-ATPase and pyrophosphatase (PPase), respectively. In this work, a comparative study on the contribution of both the plasma membrane and tonoplast in the active detoxification of plant cells after treatment with Cd was performed. The studies using plants treated and untreated with Cd reveal that both, H(+)-coupled and MgATP-driven efflux of Cd across plasma membranes and tonoplast is markedly stimulated in the presence of Cd in the environment. Previous studies on plasma-membrane localized H(+)-coupled Cd efflux together with the present data demonstrating tonoplast H(+)/Cd(2+) antiport activity suggest that H(+)-coupled secondary transport of Cd displays a lower affinity for Cd when compared with Cd primary pumps driven by MgATP. In addition, it is shown that MgATP-energized Cd efflux across both membranes is significantly enhanced by cysteine, dithiothreitol, and glutathione. These results suggest that Cd is excluded from the cytosol through an energy-dependent system as a free ion as well as a complexed form. Although both membranes contribute in the active exclusion of ionized and complexed Cd from the cytosol, the overall calculation of Cd accumulation in the everted plasma membranes and vacuolar vesicles suggests that the tonoplast and vacuole have a major function in Cd efflux from the cytosol in the roots of cucumber subjected to Cd stress.


Asunto(s)
Cadmio/metabolismo , Membrana Celular/metabolismo , Cucumis sativus/metabolismo , Membranas Intracelulares/metabolismo , Raíces de Plantas/metabolismo , Adenosina Trifosfatasas/metabolismo , Antiportadores/metabolismo , Transporte Biológico Activo , Cucumis sativus/enzimología , Proteínas de Plantas/metabolismo , Vacuolas/metabolismo
10.
Front Plant Sci ; 9: 1984, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687374

RESUMEN

Tobacco is frequently considered as a plant useful for phytoremediation of metal-contaminated soil, despite the mechanisms for regulation of uptake and accumulation being largely unknown. Here we cloned and characterized a new tobacco Zn and Cd transporter NtZIP4B from the ZIP family (ZRT-IRT-Like proteins). It complemented the Zn-uptake defective yeast mutant zrt1zrt2, and rendered the wild type DY1457 yeast more sensitive to Cd. Bioinformatic analysis and transient expression of the NtZIP4B-GFP fusion protein in tobacco leaves indicated its localization to the plasma membrane. Real-time q-PCR based analysis showed that it is expressed in all vegetative organs with the highest level in leaves. The Zn status determined transcript abundance; NtZIP4B was upregulated by Zn-deficiency and downregulated by Zn excess. At the tissue level, in roots NtZIP4B is expressed in the vasculature of the middle part of the roots and in surrounding tissues including the root epidermis; in leaves primarily in the vasculature. Bioinformatic analysis identified two copies of ZIP4 in tobacco, NtZIP4A and NtZIP4B with 97.57% homology at the amino acid level, with the same expression pattern for both, indicating a high degree of functional redundancy. Moreover, the present study provides new insights into the coordinated function of NtZIP1, NtZIP2, NtZIP4, NtZIP5, NtZIP8, NtIRT1, and NtIRT1-like in response to low-to-high Zn status. Leaves were the major site of NtZIP4, NtZIP5, and NtZIP8 expression, and roots for NtZIP1, NtZIP2, NtIRT1, and NtIRT1-like. Contrasting expression level in the apical and basal root parts indicates distinct roles in root-specific processes likely contributing to the regulation of Zn root-to-shoot translocation. In summary, new insight into the role of ZIP genes in Zn homeostasis pointing to their overlapping and complementary functions, offers opportunities for strategies to modify Zn and Cd root/shoot partition in tobacco.

11.
Front Plant Sci ; 9: 185, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29503658

RESUMEN

Tobacco has frequently been suggested as a candidate plant species for use in phytoremediation of metal contaminated soil but knowledge on the regulation of its metal-homeostasis is still in the infancy. To identify new tobacco metal transport genes that are involved in Zn homeostasis a bioinformatics study using the tobacco genome information together with expression analysis was performed. Ten new tobacco metal transport genes from the ZIP, NRAMP, MTP, and MRP/ABCC families were identified with expression levels in leaves that were modified by exposure to Zn excess. Following exposure to high Zn there was upregulation of NtZIP11-like, NtNRAMP3, three isoforms of NtMTP2, three MRP/ABCC genes (NtMRP5-like, NtMRP10-like, and NtMRP14 like) and downregulation of NtZIP1-like and NtZIP4. This suggests their involvement in several processes governing the response to Zn-related stress and in the efficiency of Zn accumulation (uptake, sequestration, and redistribution). Further detailed analysis of NtZIP1-like provided evidence that it is localized at the plasma membrane and is involved in Zn but not Fe and Cd transport. NtZIP1-like is expressed in the roots and shoots, and is regulated developmentally and in a tissue-specific manner. It is highly upregulated by Zn deficiency in the leaves and the root basal region but not in the root apical zone (region of maturation and absorption containing root hairs). Thus NtZIP1-like is unlikely to be responsible for Zn uptake by the root apical region but rather in the uptake by root cells within the already mature basal zone. It is downregulated by Zn excess suggesting it is involved in a mechanism to protect the root and leaf cells from accumulating excess Zn.

12.
Nat Cell Biol ; 16(9): 841-51, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25173977

RESUMEN

Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signalling cascades that regulate cilium formation remain incompletely understood. Here we report that prostaglandin signalling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants show ciliogenesis defects, and the lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4(T804M) mutant. PGE2 synthesis enzyme cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates the cyclic-AMP-mediated signalling cascade, are required for cilium formation and elongation. Importantly, PGE2 signalling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signalling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis.


Asunto(s)
Cilios/fisiología , Dinoprostona/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células HEK293 , Humanos , Macrófagos del Hígado/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Transporte de Proteínas , Transducción de Señal , Vesículas Transportadoras/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
13.
PLoS One ; 8(9): e73972, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040130

RESUMEN

Studies in the last few years have shed light on the process of nitrate accumulation within plant cells, achieving molecular identification and partial characterization of the genes and proteins involved in this process. However, contrary to the plasma membrane-localized nitrate transport activities, the kinetics of active nitrate influx into the vacuole and its adaptation to external nitrate availability remain poorly understood. In this work, we have investigated the activity and regulation of the tonoplast-localized H(+)/NO3(-) antiport in cucumber roots in response to N starvation and NO3(-) induction. The time course of nitrate availability strongly influenced H(+)/NO3(-) antiport activity at the tonoplast of root cells. However, under N starvation active nitrate accumulation within the vacuole still occurred. Hence, either a constitutive H(+)-coupled transport system specific for nitrate operates at the tonoplast, or nitrate uses another transport protein of broader specificity to different anions to enter the vacuole via a proton-dependent process. H(+)/NO3(-) antiport in cucumber was significantly stimulated in NO3(-)-induced plants that were supplied with nitrate for 24 hours following 6-day-long N starvation. The cytosolic fraction isolated from the roots of NO3(-)-induced plants significantly stimulated H(+)/NO3(-) antiport in tonoplast membranes isolated from cucumbers growing on nitrate. The stimulatory effect of the cytosolic fraction was completely abolished by EGTA and the protein kinase inhibitor staurosporine and slightly enhanced by the phosphatase inhibitors okadaic acid and cantharidin. Hence, we conclude that stimulation of H(+)/NO3(-) antiport at the tonoplast of cucumber roots in response to nitrate provision may occur through the phosphorylation of a membrane antiporter involving Ca-dependent, staurosporine-sensitive protein kinase.


Asunto(s)
Antiportadores/metabolismo , Cucumis sativus/metabolismo , Hidrógeno/metabolismo , Nitratos/metabolismo , Células Vegetales/metabolismo , Raíces de Plantas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cloruros/metabolismo , Cucumis sativus/efectos de los fármacos , Cucumis sativus/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hidrólisis , Nitratos/farmacología , Fosforilación/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Protones , Sulfatos/metabolismo , Vesículas Transportadoras/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA