Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 543(7643): 60-64, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28252057

RESUMEN

Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite-haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago.


Asunto(s)
Fósiles , Respiraderos Hidrotermales/microbiología , Origen de la Vida , Biomasa , Isótopos de Carbono , Carbonatos/química , Compuestos Férricos/química , Óxido Ferrosoférrico/química , Sedimentos Geológicos/química , Vida , Quebec , Factores de Tiempo
2.
Nature ; 458(7239): 750-3, 2009 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-19360085

RESUMEN

It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere.


Asunto(s)
Euryarchaeota/metabolismo , Níquel/análisis , Oxidación-Reducción , Agua de Mar/química , Agua de Mar/microbiología , Atmósfera/química , Sedimentos Geológicos/química , Hierro/análisis , Níquel/metabolismo , Océanos y Mares
3.
Nat Commun ; 15(1): 5679, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971883

RESUMEN

Graphite in metasedimentary rocks of the Eoarchean Saglek-Hebron Gneiss Complex (Canada) is depleted in 13C and has been interpreted as one of the oldest traces of life on Earth. The variation in crystallinity of this oldest graphitic carbon could possibly confirm the effect of metamorphism on original biomass, but this is still unexplored. Here, we report specific mineral associations with graphitic carbons that also have a range of crystallinity in the Saglek-Hebron metasedimentary rocks. Petrographic, geochemical and spectroscopic analyses in the Saglek-Hebron banded iron formations suggest that poorly crystalline graphite is likely deposited from C-H-O fluids derived from thermal decomposition of syngenetic organic matter, which is preserved as crystalline graphite during prograde metamorphism. In comparison, in the Saglek-Hebron marble, disseminations of graphite co-occur with carbonate and magnetite disseminations, pointing to abiotic synthesis of graphitic carbons via decarbonation. Our results thus highlight that variably crystalline graphitic carbons in the Saglek-Hebron metasedimentary rocks are potential abiotic products on early Earth, which lay the groundwork for identifying the preservation of prebiotic organic matter through metamorphism on Earth and beyond.

4.
Life (Basel) ; 13(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836908

RESUMEN

The origin of life must have included an abiotic stage of carbon redox reactions that involved electron transport chains and the production of lifelike patterns. Chemically oscillating reactions (COR) are abiotic, spontaneous, out-of-equilibrium, and redox reactions that involve the decarboxylation of carboxylic acids with strong oxidants and strong acids to produce CO2 and characteristic self-similar patterns. Those patterns have circular concentricity, radial geometries, characteristic circular twins, colour gradients, cavity structures, and branching to parallel alignment. We propose that COR played a role during the prebiotic cycling of carboxylic acids, furthering the new model for geology where COR can also explain the patterns of diagenetic spheroids in sediments. The patterns of COR in Petri dishes are first considered and compared to those observed in some eukaryotic lifeforms. The molecular structures and functions of reactants in COR are then compared to key biological metabolic processes. We conclude that the newly recognised similarities in compositions and patterns warrant future research to better investigate the role of halogens in biochemistry; COR in life-forms, including in humans; and the COR-stage of prebiotic carbon cycling on other planets, such as Mars.

5.
Astrobiology ; 22(1): 49-74, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34664990

RESUMEN

The documentation of biosignatures in Precambrian rocks is an important requirement in the search for evidence of life on other ancient planetary surfaces. Three major kinds of biosignatures are crucially important: primary microbial sedimentary textures, diagenetic organomineral assemblages, and stable isotope compositions. This study presents new petrographic, mineralogical, and organic geochemical analyses of biosignatures in dolomitic stromatolites from the Pethei Group (N.W.T., Canada) and the Kasegalik Formation of the Belcher Group (Nunavut, Canada). Both are approximately contemporary late Paleoproterozoic stromatolite-bearing dolomitic units deposited after the Great Oxidation Event. Micro-Raman and optical microscopy are used to identify and characterize possible diagenetic biosignatures, which include close spatial association of diagenetic materials (such as ferric-ferrous oxide and anatase) with disseminated organic matter (OM), dolomitic groundmass textures, and mineralized balls. Many of these petrographic relationships point to the oxidation of OM either biotically or abiotically in association with iron reduction and chemically oscillating reactions. Oxidation of OM in these stromatolites is consistent with the widespread oxidation of biomass during the late Paleoproterozoic Shunga-Francevillian Event. Biosignatures identified in this study are also compared with possible carbonate outcrops on Mars, and thereby contribute a basis for comparison with potential biosignatures in ancient martian terrains. Similarities are drawn between the paleoenvironments of the studied units to the Isidis and Chryse planitia as locations for potential extraterrestrial dolomitic stromatolites.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Carbonato de Calcio , Carbonatos/análisis , Exobiología , Medio Ambiente Extraterrestre/química , Sedimentos Geológicos/química , Magnesio
6.
Nat Commun ; 13(1): 148, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013337

RESUMEN

Member IV of the Ediacaran Doushantuo Formation records the recovery from the most negative carbon isotope excursion in Earth history. However, the main biogeochemical controls that ultimately drove this recovery have yet to be elucidated. Here, we report new carbon and nitrogen isotope and concentration data from the Nanhua Basin (South China), where δ13C values of carbonates (δ13Ccarb) rise from - 7‰ to -1‰ and δ15N values decrease from +5.4‰ to +2.3‰. These trends are proposed to arise from a new equilibrium in the C and N cycles where primary production overcomes secondary production as the main source of organic matter in sediments. The enhanced primary production is supported by the coexisting Raman spectral data, which reveal a systematic difference in kerogen structure between depositional environments. Our new observations point to the variable dominance of distinct microbial communities in the late Ediacaran ecosystems, and suggest that blooms of oxygenic phototrophs modulated the recovery from the most negative δ13Ccarb excursion in Earth history.


Asunto(s)
Ciclo del Carbono , Fósiles , Sedimentos Geológicos/química , Ciclo del Nitrógeno , Agua de Mar/química , Isótopos de Carbono , China , Planeta Tierra , Ecosistema , Sedimentos Geológicos/análisis , Historia Antigua , Isótopos de Nitrógeno , Oxígeno/química
7.
Sci Adv ; 8(15): eabm2296, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417227

RESUMEN

The oldest putative fossils occur as hematite filaments and tubes in jasper-carbonate banded iron formations from the 4280- to 3750-Ma Nuvvuagittuq Supracrustal Belt, Québec. If biological in origin, these filaments might have affinities with modern descendants; however, if abiotic, they could indicate complex prebiotic forms on early Earth. Here, we report images of centimeter-size, autochthonous hematite filaments that are pectinate-branching, parallel-aligned, undulated, and containing Fe2+-oxides. These microstructures are considered microfossils because of their mineral associations and resemblance to younger microfossils, modern Fe-bacteria from hydrothermal environments, and the experimental products of heated Fe-oxidizing bacteria. Additional clusters of irregular hematite ellipsoids could reflect abiotic processes of silicification, producing similar structures and thus yielding an uncertain origin. Millimeter-sized chalcopyrite grains within the jasper-carbonate rocks have 34S- and 33S-enrichments consistent with microbial S-disproportionation and an O2-poor atmosphere. Collectively, the observations suggest a diverse microbial ecosystem on the primordial Earth that may be common on other planetary bodies, including Mars.

8.
Nat Commun ; 10(1): 5022, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685820

RESUMEN

The cycling of iron and organic matter (OM) is thought to have been a major biogeochemical cycle in the early ferruginous oceans which contributed to the deposition of banded iron formations (BIF). However, BIF are deficient in OM, which is postulated to be the result of near-complete oxidation of OM during iron reduction. We test this idea by documenting the prevalence of OM in clays within BIF and clays in shales associated with BIF. We find in shales >80% of OM occurs in clays, but <1% occurs in clays within BIF. Instead, in BIF OM occurs with 13C-depleted carbonate and apatite, implying OM oxidation occurred. Conversely, BIF which possess primary clays would be expected to preserve OM in clays, yet this is not seen. This implies OM deposition in silicate-bearing BIF would have been minimal, this consequently stifled iron-cycling and primary productivity through the retention of nutrients in the sediments.

9.
Astrobiology ; 19(9): 1075-1102, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31335163

RESUMEN

Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planetas , Ciclo del Carbono , Planeta Tierra , Compuestos Férricos/análisis , Minerales/análisis , Ciclo del Nitrógeno , Incertidumbre
10.
Nat Commun ; 4: 1741, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23612282

RESUMEN

During deposition of Precambrian iron formation, the combined sedimentation of ferrihydrite and phytoplankton biomass should have facilitated Fe(III) reduction during diagenesis. However, the only evidence for this reaction in iron formations is the iron and carbon isotope values preserved in the authigenic ferrous iron-containing minerals. Here we show experimentally that spheroidal siderite, which is preserved in many iron formation and could have been precursor to rhombohedral or massive siderite, forms by reacting ferrihydrite with glucose (a proxy for microbial biomass) at pressure and temperature conditions typical of diagenesis (170 °C and 1.2 kbar). Depending on the abundance of siderite, we found that it is also possible to draw conclusions about the Fe(III):C ratio of the initial ferrihydrite-biomass sediment. Our results suggest that spherical to rhombohedral siderite structures in deep-water, Fe-oxide iron formation can be used as a biosignature for photoferrotrophy, whereas massive siderite reflects high cyanobacterial biomass loading in highly productive shallow-waters.


Asunto(s)
Carbono/metabolismo , Carbonatos/metabolismo , Compuestos Férricos/metabolismo , Fenómenos Geológicos , Hierro/metabolismo , Sedimentos Geológicos/química , Presión , Dióxido de Silicio/química , Temperatura , Factores de Tiempo
11.
Astrobiology ; 10(2): 165-81, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20105035

RESUMEN

The distribution of major phosphate deposits in the Precambrian sedimentary rock record is restricted to periods that witnessed global biogeochemical changes, but the cause of this distribution is unclear. The oldest known phosphogenic event occurred around 2.0 Ga and was followed, after more than 1.3 billion years, by an even larger phosphogenic event in the Neoproterozoic. Phosphorites (phosphate-rich sedimentary rocks that contain more than 15% P(2)O(5)) preserve a unique record of seawater chemistry, biological activity, and oceanographic changes. In an attempt to emphasize the potentially crucial significance of phosphorites in the evolution of Proterozoic biogeochemical cycles, this contribution provides a review of some important Paleoproterozoic phosphate deposits and of models proposed for their origin. A new model is then presented for the spatial and temporal modes of occurrence of phosphorites along with possible connections to global changes at both ends of the Proterozoic. Central to the new model is that periods of atmospheric oxygenation may have been caused by globally elevated rates of primary productivity stimulated by high fluxes of phosphorus delivery to seawater as a result of increased chemical weathering of continental crust over geological timescales. The striking similarities in biogeochemical evolution between the Paleo- and Neoproterozoic are discussed in light of the two oldest major phosphogenic events and their possible relation to the stepwise rise of atmospheric oxygen that ultimately resulted in significant leaps in biological evolution.


Asunto(s)
Sedimentos Geológicos/química , Geología/métodos , Minerales/análisis , Fósforo/química , Atmósfera , Química/métodos , Planeta Tierra , Ecosistema , Sedimentos Geológicos/análisis , Fenómenos Geológicos , Hidrógeno/química , Oxígeno/química , Paleontología/métodos , Tiempo (Meteorología)
12.
Appl Environ Microbiol ; 71(8): 4822-32, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16085880

RESUMEN

Stromatolites, organosedimentary structures formed by microbial activity, are found throughout the geological record and are important markers of biological history. More conspicuous in the past, stromatolites occur today in a few shallow marine environments, including Hamelin Pool in Shark Bay, Western Australia. Hamelin Pool stromatolites often have been considered contemporary analogs to ancient stromatolites, yet little is known about the microbial communities that build them. We used DNA-based molecular phylogenetic methods that do not require cultivation to study the microbial diversity of an irregular stromatolite and of the surface and interior of a domal stromatolite. To identify the constituents of the stromatolite communities, small subunit rRNA genes were amplified by PCR from community genomic DNA with universal primers, cloned, sequenced, and compared to known rRNA genes. The communities were highly diverse and novel. The average sequence identity of Hamelin Pool sequences compared to the >200,000 known rRNA sequences was only approximately 92%. Clone libraries were approximately 90% bacterial and approximately 10% archaeal, and eucaryotic rRNA genes were not detected in the libraries. The most abundant sequences were representative of novel proteobacteria (approximately 28%), planctomycetes ( approximately 17%), and actinobacteria (approximately 14%). Sequences representative of cyanobacteria, long considered to dominate these communities, comprised <5% of clones. Approximately 10% of the sequences were most closely related to those of alpha-proteobacterial anoxygenic phototrophs. These results provide a framework for understanding the kinds of organisms that build contemporary stromatolites, their ecology, and their relevance to stromatolites preserved in the geological record.


Asunto(s)
Archaea/genética , Bacterias/genética , Ecosistema , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN de Archaea/análisis , ADN Bacteriano/análisis , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA