Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Annu Rev Microbiol ; 76: 325-348, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35650666

RESUMEN

Oxygenases, which catalyze the reductive activation of O2 and incorporation of oxygen atoms into substrates, are widely distributed in aerobes. They function by switching the redox states of essential cofactors that include flavin, heme iron, Rieske non-heme iron, and Fe(II)/α-ketoglutarate. This review summarizes the catalytic features of flavin-dependent monooxygenases, heme iron-dependent cytochrome P450 monooxygenases, Rieske non-heme iron-dependent oxygenases, Fe(II)/α-ketoglutarate-dependent dioxygenases, and ring-cleavage dioxygenases, which are commonly involved in pesticide degradation. Heteroatom release (hydroxylation-coupled hetero group release), aromatic/heterocyclic ring hydroxylation to form ring-cleavage substrates, and ring cleavage are the main chemical fates of pesticides catalyzed by these oxygenases. The diversity of oxygenases, specificities for electron transport components, and potential applications of oxygenases are also discussed. This article summarizes our current understanding of the catalytic mechanisms of oxygenases and a framework for distinguishing the roles of oxygenases in pesticide degradation.


Asunto(s)
Dioxigenasas , Plaguicidas , Compuestos Ferrosos , Flavinas , Hierro , Ácidos Cetoglutáricos , Oxigenasas de Función Mixta , Oxigenasas/metabolismo
2.
Environ Res ; 183: 109258, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32311908

RESUMEN

Nicotine, the major alkaloid in tobacco, is a toxic, carcinogenic, and addictive compound. In recent years, nicotine catabolism in prokaryotes, including the catabolic pathways for its degradation and the catabolic genes that encode the enzymes of these pathways, have been systemically investigated. In this review, the three known pathways for nicotine catabolism in bacteria are summarized: the pyridine pathway, the pyrrolidine pathway, and a variation of the pyridine and pyrrolidine pathway (VPP pathway). The three nicotine catabolic pathways appear to have evolved separately in three distantly related lineages of bacteria. However, the general mechanism for the breakdown of the nicotine molecule in all three pathways is conserved and can be divided into six major enzymatic steps or catabolic modules that involve hydroxylation of the pyridine ring, dehydrogenation of the pyrrolidine ring, cleavage of the side chain, cleavage of the pyridine ring, dehydrogenation of the side chain, and deamination of pyridine ring-lysis products. In addition to summarizing our current understanding of nicotine degradation pathways, we identified several potential nicotine-degrading bacteria whose genome sequences are in public databases by comparing the sequences of conserved catabolic enzymes. Finally, several uncharacterized genes that are colocalized with nicotine degradation genes and are likely to be involved in nicotine catabolism, including regulatory genes, methyl-accepting chemotaxis protein genes, transporter genes, and cofactor genes are discussed. This review provides a comprehensive overview of the catabolism of nicotine in prokaryotes and highlights aspects of the process that still require additional research.


Asunto(s)
Bacterias , Nicotiana , Nicotina , Bacterias/metabolismo , Proteínas Bacterianas , Nicotina/metabolismo
3.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31471307

RESUMEN

Although alcohols are toxic to many microorganisms, they are good carbon and energy sources for some bacteria, including many pseudomonads. However, most studies that have examined chemosensory responses to alcohols have reported that alcohols are sensed as repellents, which is consistent with their toxic properties. In this study, we examined the chemotaxis of Pseudomonas putida strain F1 to n-alcohols with chain lengths of 1 to 12 carbons. P. putida F1 was attracted to all n-alcohols that served as growth substrates (C2 to C12) for the strain, and the responses were induced when cells were grown in the presence of alcohols. By assaying mutant strains lacking single or multiple methyl-accepting chemotaxis proteins, the receptor mediating the response to C2 to C12 alcohols was identified as McfP, the ortholog of the P. putida strain KT2440 receptor for C2 and C3 carboxylic acids. Besides being a requirement for the response to n-alcohols, McfP was required for the response of P. putida F1 to pyruvate, l-lactate, acetate, and propionate, which are detected by the KT2440 receptor, and the medium- and long-chain carboxylic acids hexanoic acid and dodecanoic acid. ß-Galactosidase assays of P. putida F1 carrying an mcfP-lacZ transcriptional fusion showed that the mcfP gene is not induced in response to alcohols. Together, our results are consistent with the idea that the carboxylic acids generated from the oxidation of alcohols are the actual attractants sensed by McfP in P. putida F1, rather than the alcohols themselves.IMPORTANCE Alcohols, released as fermentation products and produced as intermediates in the catabolism of many organic compounds, including hydrocarbons and fatty acids, are common components of the microbial food web in soil and sediments. Although they serve as good carbon and energy sources for many soil bacteria, alcohols have primarily been reported to be repellents rather than attractants for motile bacteria. Little is known about how alcohols are sensed by microbes in the environment. We report here that catabolizable n-alcohols with linear chains of up to 12 carbons serve as attractants for the soil bacterium Pseudomonas putida, and rather than being detected directly, alcohols appear to be catabolized to acetate, which is then sensed by a specific cell-surface chemoreceptor protein.


Asunto(s)
Alcoholes/metabolismo , Proteínas Bacterianas/genética , Ácidos Carboxílicos/metabolismo , Quimiotaxis , Pseudomonas putida/fisiología , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Pseudomonas putida/genética
4.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31492670

RESUMEN

Soil bacteria adapt to diverse and rapidly changing environmental conditions by sensing and responding to environmental cues using a variety of sensory systems. Two-component systems are a widespread type of signal transduction system present in all three domains of life and typically are comprised of a sensor kinase and a response regulator. Many two-component systems function by regulating gene expression in response to environmental stimuli. The bacterial chemotaxis system is a modified two-component system with additional protein components and a response that, rather than regulating gene expression, involves behavioral adaptation and results in net movement toward or away from a chemical stimulus. Soil bacteria generally have 20 to 40 or more chemoreceptors encoded in their genomes. To simplify the identification of chemoeffectors (ligands) sensed by bacterial chemoreceptors, we constructed hybrid sensor proteins by fusing the sensor domains of Pseudomonas putida chemoreceptors to the signaling domains of the Escherichia coli NarX/NarQ nitrate sensors. Responses to potential attractants were monitored by ß-galactosidase assays using an E. coli reporter strain in which the nitrate-responsive narG promoter was fused to lacZ Hybrid receptors constructed from PcaY, McfR, and NahY, which are chemoreceptors for aromatic acids, tricarboxylic acid cycle intermediates, and naphthalene, respectively, were sensitive and specific for detecting known attractants, and the ß-galactosidase activities measured in E. coli correlated well with results of chemotaxis assays in the native P. putida strain. In addition, a screen of the hybrid receptors successfully identified new ligands for chemoreceptor proteins and resulted in the identification of six receptors that detect propionate.IMPORTANCE Relatively few of the thousands of chemoreceptors encoded in bacterial genomes have been functionally characterized. More importantly, although methyl-accepting chemotaxis proteins, the major type of chemoreceptors present in bacteria, are easily identified bioinformatically, it is not currently possible to predict what chemicals will bind to a particular chemoreceptor. Chemotaxis is known to play roles in biodegradation as well as in host-pathogen and host-symbiont interactions, but many studies are currently limited by the inability to identify relevant chemoreceptor ligands. The use of hybrid receptors and this simple E. coli reporter system allowed rapid and sensitive screening for potential chemoeffectors. The fusion site chosen for this study resulted in a high percentage of functional hybrids, indicating that it could be used to broadly test chemoreceptor responses from phylogenetically diverse samples. Considering the wide range of chemical attractants detected by soil bacteria, hybrid receptors may also be useful as sensitive biosensors.


Asunto(s)
Proteínas Bacterianas/genética , Quimiotaxis/genética , Escherichia coli/genética , Pseudomonas putida/genética , Transducción de Señal , Proteínas de Escherichia coli/genética , Expresión Génica , Genoma Bacteriano , Proteínas Quimiotácticas Aceptoras de Metilo/genética
5.
BMC Genomics ; 19(1): 757, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30340510

RESUMEN

BACKGROUND: An efficient signal transduction system allows a bacterium to sense environmental cues and then to respond positively or negatively to those signals; this process is referred to as taxis. In addition to external cues, the internal metabolic state of any bacterium plays a major role in determining its ability to reside and thrive in its current environment. Similar to external signaling molecules, cytoplasmic signals are also sensed by methyl-accepting chemotaxis proteins (MCPs) via diverse ligand binding domains. Myxobacteria are complex soil-dwelling social microbes that can perform a variety of physiologic and metabolic activities ranging from gliding motility, sporulation, biofilm formation, carotenoid and secondary metabolite biosynthesis, predation, and slime secretion. To live such complex lifestyles, they have evolved efficient signal transduction systems with numerous one- and two-component regulatory system along with a large array of chemosensory systems to perceive and integrate both external and internal cues. RESULTS: Here we report the in silico characterization of a putative energy taxis cluster, Cc-5, which is present in only one amongst 34 known and sequenced myxobacterial genomes, Corallococcus coralloides. In addition, we propose that this energy taxis cluster is involved in oxygen sensing, suggesting that C. coralloides can sense (either directly or indirectly) and then respond to changing concentrations of molecular oxygen. CONCLUSIONS: This hypothesis is based on the presence of a unique MCP encoded in this gene cluster that contains two different oxygen-binding sensor domains, PAS and globin. In addition, the two monooxygenases encoded in this cluster may contribute to aerobic respiration via ubiquinone biosynthesis, which is part of the cytochrome bc1 complex. Finally, we suggest that this cluster was acquired from Actinobacteria, Gammaproteobacteria or Cyanobacteria. Overall, this in silico study has identified a potentially innovative and evolved mechanism of energy taxis in only one of the myxobacteria, C. coralloides.


Asunto(s)
Quimiotaxis/genética , Simulación por Computador , Myxococcales/genética , Myxococcales/metabolismo , Citoplasma/genética , Evolución Molecular , Genoma Bacteriano/genética , Genómica , Myxococcales/citología
6.
J Theor Biol ; 455: 281-292, 2018 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-30036529

RESUMEN

A recently developed 'phenotype-centric' modeling strategy combines four innovations with the potential to advance our understanding of complex biological systems: (1) a rigorous mathematical definition of biochemical phenotypes, (2) a method for enumerating the phenotypic repertoire based on the biomolecular network architecture, (3) an integrated suite of computational algorithms for the efficient prediction of parameter values and analysis of the phenotypic repertoire, and (4) a user-focused environment for navigating the resulting space of phenotypes and identifying biologically relevant features and system design principles. These innovations will facilitate deterministic and stochastic simulations that require parameter values, will accelerate both hypothesis discrimination in systems biology and the design cycle in synthetic biology. Here we first review the fundamental definition of biochemical phenotype that enables this new modeling strategy and give an overview of the strategy using a simple system from phage λ to provide an example of a global design principle. Second, we illustrate this approach in more detail with an application to a common network architecture involving positive and negative feedback. We report system design principles related to the global tolerances of this system's phenotypes. Finally, we apply the phenotype-centric strategy to a logic network and compare the results with those obtained from a Boolean approach. Mechanistic and Boolean models have well-documented complementary advantages and disadvantages. Mechanistic models have the advantage of being biologically realistic; however, they also are limited by the large number of kinetic parameters whose values are largely unknown. Boolean models have the advantage of being parameter free; however, they also are limited by the absence of well-known physical and chemical constraints. We show that the phenotype-centric modeling strategy combines advantages of both.


Asunto(s)
Algoritmos , Modelos Biológicos , Biología de Sistemas
7.
Mol Microbiol ; 101(2): 224-37, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27008921

RESUMEN

Micro-organisms sense and chemotactically respond to aromatic compounds. Although the existence of chemoreceptors that bind to aromatic attractants and subsequently trigger chemotaxis have long been speculated, such a chemoreceptor has not been demonstrated. In this report, we demonstrated that the chemoreceptor MCP2901 from Comamonas testosteroni CNB-1 binds to aromatic compounds and initiates downstream chemotactic signaling in addition to its ability to trigger chemotaxis via citrate binding. The function of gene MCP2901 was investigated by genetic deletion from CNB-1 and genetic complementation of the methyl-accepting chemotaxis protein (MCP)-null mutant CNB-1Δ20. Results showed that the expression of MCP2901 in the MCP-null mutant restored chemotaxis toward nine tested aromatic compounds and nine carboxylic acids. Isothermal titration calorimetry (ITC) analyses demonstrated that the ligand-binding domain of MCP2901 (MCP2901LBD) bound to citrate, and weakly to gentisate and 4-hydroxybenzoate. Additionally, ITC assays indicated that MCP2901LBD bound strongly to 2,6-dihydroxybenzoate and 2-hydroxybenzoate, which are isomers of gentisate and 4-hydroxybenzoate respectively that are not metabolized by CNB-1. Agarose-in-plug and capillary assays showed that these two molecules serve as chemoattractants for CNB-1. Through constructing membrane-like MCP2901-inserted Nanodiscs and phosphorelay activity assays, we demonstrated that 2,6-dihydroxybenzoate and 2-hydroxybenzoate altered kinase activity of CheA. This is the first evidence of an MCP binding to an aromatic molecule and triggering signal transduction for bacterial chemotaxis.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Quimiotaxis/fisiología , Comamonas testosteroni/metabolismo , Aminoácidos Aromáticos , Proteínas Bacterianas/metabolismo , Ácido Cítrico/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Hidroxibenzoatos/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Unión Proteica , Transducción de Señal/fisiología
8.
Microbiology (Reading) ; 163(10): 1490-1501, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28954643

RESUMEN

Soil bacteria such as pseudomonads are widely studied due to their diverse metabolic capabilities, particularly the ability to degrade both naturally occurring and xenobiotic aromatic compounds. Chemotaxis, the directed movement of cells in response to chemical gradients, is common in motile soil bacteria and the wide range of chemicals detected often mirrors the metabolic diversity observed. Pseudomonas putida F1 is a soil isolate capable of chemotaxis toward, and degradation of, numerous aromatic compounds. We showed that P. putida F1 is capable of degrading members of a class of naturally occurring aromatic compounds known as hydroxycinnamic acids, which are components of lignin and are ubiquitous in the soil environment. We also demonstrated the ability of P. putida F1 to sense three hydroxycinnamic acids: p-coumaric, caffeic and ferulic acids. The chemotaxis response to hydroxycinnamic acids was induced during growth in the presence of hydroxycinnamic acids and was negatively regulated by HcaR, the repressor of the hydroxycinnamic acid catabolic genes. Chemotaxis to the three hydroxycinnamic acids was dependent on catabolism, as a mutant lacking the gene encoding feruloyl-CoA synthetase (Fcs), which catalyzes the first step in hydroxycinnamic acid degradation, was unable to respond chemotactically toward p-coumaric, caffeic, or ferulic acids. We tested whether an energy taxis mutant could detect hydroxycinnamic acids and determined that hydroxycinnamic acid sensing is mediated by the energy taxis receptor Aer2.


Asunto(s)
Ácidos Cumáricos/metabolismo , Metabolismo Energético , Pseudomonas putida/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quimiotaxis/genética , Quimiotaxis/inmunología , Metabolismo Energético/genética , Redes y Vías Metabólicas , Mutación , Infecciones por Pseudomonas/microbiología
9.
Mol Microbiol ; 96(1): 134-47, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25582673

RESUMEN

Aromatic and hydroaromatic compounds that are metabolized through the ß-ketoadipate catabolic pathway serve as chemoattractants for Pseudomonas putida F1. A screen of P. putida F1 mutants, each lacking one of the genes encoding the 18 putative methyl-accepting chemotaxis proteins (MCPs), revealed that pcaY encodes the MCP required for metabolism-independent chemotaxis to vanillate, vanillin, 4-hydroxybenzoate, benzoate, protocatechuate, quinate, shikimate, as well as 10 substituted benzoates that do not serve as growth substrates for P. putida F1. Chemotaxis was induced during growth on aromatic compounds, and an analysis of a pcaY-lacZ fusion revealed that pcaY is expressed in the presence of ß-ketoadipate, a common intermediate in the pathway. pcaY expression also required the transcriptional activator PcaR, indicating that pcaY is a member of the pca regulon, which includes three unlinked gene clusters that encode five enzymes required for the conversion of 4-hydroxybenzoate to tricarboxylic acid cycle intermediates as well as the major facilitator superfamily transport protein PcaK. The 4-hydroxybenzoate permease PcaK was shown to modulate the chemotactic response by facilitating the uptake of 4-hydroxybenzoate, which leads to the accumulation of ß-ketoadipate, thereby increasing pcaY expression. The results show that chemotaxis, transport and metabolism of aromatic compounds are intimately linked in P. putida.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoatos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pseudomonas putida/fisiología , Adipatos/metabolismo , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Benzaldehídos/metabolismo , Transporte Biológico , Quimiotaxis , Genes Bacterianos , Proteínas Quimiotácticas Aceptoras de Metilo , Familia de Multigenes , Mutación , Parabenos/metabolismo , Pseudomonas putida/genética , Regulón
10.
Environ Sci Technol ; 50(13): 6708-16, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-26895026

RESUMEN

Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.


Asunto(s)
Dioxigenasas/metabolismo , Isótopos de Nitrógeno , Biodegradación Ambiental , Isótopos de Carbono , Cinética , Especificidad por Sustrato
11.
Appl Environ Microbiol ; 81(1): 309-19, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25344236

RESUMEN

Acidovorax sp. strain JS42 uses 2-nitrotoluene as a sole source of carbon and energy. The first enzyme of the degradation pathway, 2-nitrotoluene 2,3-dioxygenase, adds both atoms of molecular oxygen to 2-nitrotoluene, forming nitrite and 3-methylcatechol. All three mononitrotoluene isomers serve as substrates for 2-nitrotoluene dioxygenase, but strain JS42 is unable to grow on 3- or 4-nitrotoluene. Using both long- and short-term selections, we obtained spontaneous mutants of strain JS42 that grew on 3-nitrotoluene. All of the strains obtained by short-term selection had mutations in the gene encoding the α subunit of 2-nitrotoluene dioxygenase that changed isoleucine 204 at the active site to valine. Those strains obtained by long-term selections had mutations that changed the same residue to valine, alanine, or threonine or changed the alanine at position 405, which is just outside the active site, to glycine. All of these changes altered the regiospecificity of the enzymes with 3-nitrotoluene such that 4-methylcatechol was the primary product rather than 3-methylcatechol. Kinetic analyses indicated that the evolved enzymes had enhanced affinities for 3-nitrotoluene and were more catalytically efficient with 3-nitrotoluene than the wild-type enzyme. In contrast, the corresponding amino acid substitutions in the closely related enzyme nitrobenzene 1,2-dioxygenase were detrimental to enzyme activity. When cloned genes encoding the evolved dioxygenases were introduced into a JS42 mutant lacking a functional dioxygenase, the strains acquired the ability to grow on 3-nitrotoluene but with significantly longer doubling times than the evolved strains, suggesting that additional beneficial mutations occurred elsewhere in the genome.


Asunto(s)
Comamonadaceae/metabolismo , Oxigenasas/metabolismo , Tolueno/análogos & derivados , Comamonadaceae/crecimiento & desarrollo , Prueba de Complementación Genética , Mutación , Selección Genética , Especificidad por Sustrato , Tolueno/metabolismo
12.
Microbiology (Reading) ; 160(Pt 12): 2661-2669, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25294107

RESUMEN

Soil bacteria are generally capable of growth on a wide range of organic chemicals, and pseudomonads are particularly adept at utilizing aromatic compounds. Pseudomonads are motile bacteria that are capable of sensing a wide range of chemicals, using both energy taxis and chemotaxis. Whilst the identification of specific chemicals detected by the ≥26 chemoreceptors encoded in Pseudomonas genomes is ongoing, the functions of only a limited number of Pseudomonas chemoreceptors have been revealed to date. We report here that McpC, a methyl-accepting chemotaxis protein in Pseudomonas putida F1 that was previously shown to function as a receptor for cytosine, was also responsible for the chemotactic response to the carboxylated pyridine nicotinic acid.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis , Citosina/metabolismo , Proteínas de la Membrana/metabolismo , Niacina/metabolismo , Pseudomonas putida/fisiología , Proteínas Quimiotácticas Aceptoras de Metilo
13.
Environ Sci Technol ; 48(18): 10750-9, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25101486

RESUMEN

Oxygenation of aromatic rings is a frequent initial step in the biodegradation of persistent contaminants, and the accompanying isotope fractionation is increasingly used to assess the extent of transformation in the environment. Here, we systematically investigated the dioxygenation of two nitroaromatic compounds (nitrobenzene and 2-nitrotoluene) by nitrobenzene dioxygenase (NBDO) to obtain insights into the factors governing its C, H, and N isotope fractionation. Experiments were carried out at different levels of biological complexity from whole bacterial cells to pure enzyme. C, H, and N isotope enrichment factors and kinetic isotope effects (KIEs) were derived from the compound-specific isotope analysis of nitroarenes, whereas C isotope fractionation was also quantified in the oxygenated reaction products. Dioxygenation of nitrobenzene to catechol and 2-nitrotoluene to 3-methylcatechol showed large C isotope enrichment factors, ϵC, of -4.1 ± 0.2‰ and -2.5 ± 0.2‰, respectively, and was observed consistently in the substrates and dioxygenation products. ϵH- and ϵN-values were smaller, that is -5.7 ± 1.3‰ and -1.0 ± 0.3‰, respectively. C isotope fractionation was also identical in experiments with whole bacterial cells and pure enzymes. The corresponding (13)C-KIEs for the dioxygenation of nitrobenzene and 2-nitrotoluene were 1.025 ± 0.001 and 1.018 ± 0.001 and suggest a moderate substrate specificity. Our study illustrates that dioxygenation of nitroaromatic contaminants exhibits a large C isotope fractionation, which is not masked by substrate transport and uptake processes and larger than dioxygenation of other aromatic hydrocarbons.


Asunto(s)
Dioxigenasas/metabolismo , Nitrobencenos/metabolismo , Oxígeno/metabolismo , Tolueno/análogos & derivados , Biocatálisis , Biodegradación Ambiental , Isótopos de Carbono/análisis , Catecoles/metabolismo , Fraccionamiento Químico , Deuterio/metabolismo , Escherichia coli/metabolismo , Cinética , Nitritos/metabolismo , Isótopos de Nitrógeno , Oxidación-Reducción , Tolueno/metabolismo
14.
J Hazard Mater ; 476: 134951, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38917628

RESUMEN

Mesotrione is a herbicide used in agricultural production; however, its stability and long-term residues pose ecological risks to soil health and subsequent crops. In this research, the strain Amycolatopsis nivea La24 was identified as capable of completely degrading 50 mg∙L-1 mesotrione within 48 h. It exhibited a broad adaptability to various environment and could degrade three sulfonylurea herbicides (nicosulfuron, chlorimuron-methyl, and cinosulfuron). Non-target metabonomic and mass spectrometry demonstrated that La24 strain broke down the mesotrione parent molecule by targeting the ß-diketone bond and nitro group, resulting in the production of five possible degradation products. The differentially expressed genes were significantly enriched in fatty acid degradation, amino acid metabolism, and other pathways, and the differentially metabolites in glutathione metabolism, arginine/proline metabolism, cysteine/methionine metabolism, and other pathways. Additionally, it was confirmed by heterologous expression that nitroreductase was directly involved in the mesotrione degradation, and NDMA-dependent methanol dehydrogenase would increase the resistance to mesotrione. Finally, the intracellular response of La24 during mesotrione degradation was proposed. This work provides insight for a comprehensive understanding of the mesotrione biodegradation mechanism, significantly expands the resources for pollutant degradation, and offers the potential for a more sustainable solution to address herbicide pollution in soil.


Asunto(s)
Amycolatopsis , Biodegradación Ambiental , Ciclohexanonas , Herbicidas , Herbicidas/metabolismo , Herbicidas/química , Ciclohexanonas/metabolismo , Amycolatopsis/metabolismo , Amycolatopsis/genética , Metabolómica , Compuestos de Sulfonilurea/metabolismo , Contaminantes del Suelo/metabolismo , Multiómica
15.
Microbiology (Reading) ; 159(Pt 6): 1086-1096, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23618999

RESUMEN

Previous studies have demonstrated that Pseudomonas putida strains are not only capable of growth on a wide range of organic substrates, but also chemotactic towards many of these compounds. However, in most cases the specific chemoreceptors that are involved have not been identified. The complete genome sequences of P. putida strains F1 and KT2440 revealed that each strain is predicted to encode 27 methyl-accepting chemotaxis proteins (MCPs) or MCP-like proteins, 25 of which are shared by both strains. It was expected that orthologous MCPs in closely related strains of the same species would be functionally equivalent. However, deletion of the gene encoding the P. putida F1 orthologue (locus tag Pput_4520, designated mcfS) of McpS, a known receptor for organic acids in P. putida KT2440, did not result in an obvious chemotaxis phenotype. Therefore, we constructed individual markerless MCP gene deletion mutants in P. putida F1 and screened for defective sensory responses to succinate, malate, fumarate and citrate. This screen resulted in the identification of a receptor, McfQ (locus tag Pput_4894), which responds to citrate and fumarate. An additional receptor, McfR (locus tag Pput_0339), which detects succinate, malate and fumarate, was found by individually expressing each of the 18 genes encoding canonical MCPs from strain F1 in a KT2440 mcpS-deletion mutant. Expression of mcfS in the same mcpS deletion mutant demonstrated that, like McfR, McfS responds to succinate, malate, citrate and fumarate. Therefore, at least three receptors, McfR, McfS, and McfQ, work in concert to detect organic acids in P. putida F1.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos Carboxílicos/metabolismo , Quimiotaxis , Proteínas de la Membrana/metabolismo , Pseudomonas putida/fisiología , Proteínas Bacterianas/genética , Eliminación de Gen , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo , Pseudomonas putida/efectos de los fármacos , Pseudomonas putida/genética , Especificidad por Sustrato
16.
Appl Environ Microbiol ; 79(24): 7702-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24096414

RESUMEN

The bacterium Pseudonocardia dioxanivorans CB1190 grows on the cyclic ethers 1,4-dioxane (dioxane) and tetrahydrofuran (THF) as sole carbon and energy sources. Prior transcriptional studies indicated that an annotated THF monooxygenase (THF MO) gene cluster, thmADBC, located on a plasmid in CB1190 is upregulated during growth on dioxane. In this work, transcriptional analysis demonstrates that upregulation of thmADBC occurs during growth on the dioxane metabolite ß-hydroxyethoxyacetic acid (HEAA) and on THF. Comparison of the transcriptomes of CB1190 grown on THF and succinate (an intermediate of THF degradation) permitted the identification of other genes involved in THF metabolism. Dioxane and THF oxidation activity of the THF MO was verified in Rhodococcus jostii RHA1 cells heterologously expressing the CB1190 thmADBC gene cluster. Interestingly, these thmADBC expression clones accumulated HEAA as a dead-end product of dioxane transformation, indicating that despite its genes being transcriptionally upregulated during growth on HEAA, the THF MO enzyme is not responsible for degradation of HEAA in CB1190. Similar activities were also observed in RHA1 cells heterologously expressing the thmADBC gene cluster from Pseudonocardia tetrahydrofuranoxydans K1.


Asunto(s)
Actinomycetales/enzimología , Actinomycetales/metabolismo , Dioxanos/metabolismo , Éteres Cíclicos/metabolismo , Furanos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Acetatos/metabolismo , Clonación Molecular , Perfilación de la Expresión Génica , Familia de Multigenes , Oxidación-Reducción , Rhodococcus/genética , Rhodococcus/metabolismo , Transcripción Genética
17.
Appl Environ Microbiol ; 79(7): 2416-23, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23377939

RESUMEN

The phenylacetic acid (PAA) degradation pathway is a widely distributed funneling pathway for the catabolism of aromatic compounds, including the environmental pollutants styrene and ethylbenzene. However, bacterial chemotaxis to PAA has not been studied. The chemotactic strain Pseudomonas putida F1 has the ability to utilize PAA as a sole carbon and energy source. We identified a putative PAA degradation gene cluster (paa) in P. putida F1 and demonstrated that PAA serves as a chemoattractant. The chemotactic response was induced during growth with PAA and was dependent on PAA metabolism. A functional cheA gene was required for the response, indicating that PAA is sensed through the conserved chemotaxis signal transduction system. A P. putida F1 mutant lacking the energy taxis receptor Aer2 was deficient in PAA taxis, indicating that Aer2 is responsible for mediating the response to PAA. The requirement for metabolism and the role of Aer2 in the response indicate that P. putida F1 uses energy taxis to detect PAA. We also revealed that PAA is an attractant for Escherichia coli; however, a mutant lacking a functional Aer energy receptor had a wild-type response to PAA in swim plate assays, suggesting that PAA is detected through a different mechanism in E. coli. The role of Aer2 as an energy taxis receptor provides the potential to sense a broad range of aromatic growth substrates as chemoattractants. Since chemotaxis has been shown to enhance the biodegradation of toxic pollutants, the ability to sense PAA gradients may have implications for the bioremediation of aromatic hydrocarbons that are degraded via the PAA pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Quimiotaxis , Fenilacetatos/metabolismo , Pseudomonas putida/efectos de los fármacos , Pseudomonas putida/fisiología , Proteínas Portadoras/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Pseudomonas putida/genética , Transducción de Señal
18.
Environ Pollut ; 336: 122393, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37595734

RESUMEN

Herbicide mixtures are a new and effective agricultural strategy for managing suppress weed resistance and have been widely used in controlling weeding growth in maize fields. However, the potential ecotoxicological impact of these mixtures on the microbial community structure and function within various root-associated niches, remains inadequately understood. Here, the effects of nicosulfuron, mesotrione and atrazine on soil enzyme activity and microbial community structure and function were investigated when applied alone and in combination. The findings indicated that herbicide mixtures exhibit a prolonged half-life compared to single herbicides. Ecological niches are the major factor influencing the structure and functions of the microbial community, with the rhizosphere exhibiting a more intensive response to herbicide stress. Herbicides significantly inhibited the activities of soil functional enzymes, including dehydrogenase, urease and sucrose in the short-term. Single herbicide did not drastically influence the alpha or beta diversity of the soil bacterial community, but herbicide mixtures significantly increased the richness of the fungal community. Meanwhile, the key functional microbial populations, such as Pseudomonas and Enterobacteriaceae, were significantly altered by herbicide stress. Both individual and combined use of the three herbicides reduced the complexity and stability of the bacterial network but increased the interspecific cooperations of fungal community in the rhizosphere. Moreover, by quantification of residual herbicide concentrations in the soil, we showed that the degradation period of the herbicide mixture was longer than that of single herbicides. Herbicide mixtures increased the contents of NO3--N and NH4+-N in the soil in the short-term. Overall, our study provided a comprehensive insight into the response of maize root-associated microbial communities to herbicide mixtures and facilitated the assessment of the ecological risks posed by herbicide mixtures to the agricultural environment from an agricultural sustainability perspective.


Asunto(s)
Atrazina , Herbicidas , Microbiota , Herbicidas/análisis , Zea mays/metabolismo , Bacterias/metabolismo , Suelo/química , Microbiología del Suelo
19.
J Hazard Mater ; 443(Pt A): 130197, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36272371

RESUMEN

The widespread use of the herbicide chlorimuron-methyl is hazard to rotational crops and causes soil degradation problems. Biodegradation is considered a promising way for removing herbicide residues from the environment. Here, a new isolated strain, Cedecea sp. LAM2020, enabled complete degradation of 100 mg/L chlorimuron-methyl within five days. Transcriptome analysis revealed that ABC transporters, atrazine degradation and purine metabolism were enriched in the KEGG pathway. Integrating GO and KEGG classification with related reports, we predict that carboxylesterases are involved in the biodegradation of chlorimuron-methyl by LAM2020. Heterologous expression of the carboxylesterase gene carH showed 26.67% degradation of 50 mg/L chlorimuron-methyl within 6 h. The intracellular potential biological response and extracellular degradation process of chlorimuron-ethyl were analyzed by the nontarget metabolomic and mass spectrometry respectively, and the biodegradation characteristics and complete mineralization pathway was revealed. The cleavage of the sulfonylurea bridge and the ester bond achieved the first step in the degradation of chlorimuron-methyl. Together, these results reveal the presence of acidolysis and enzymatic degradation of chlorimuron-methyl by strain LAM2020. Hydroponic corn experiment showed that the addition of strain LAM2020 alleviated the toxic effects of chlorimuron-ethyl on the plants. Collectively, strain LAM2020 may be a promising microbial agent for plants chlorimuron-ethyl detoxification and soil biofertilizer.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Compuestos de Sulfonilurea/metabolismo , Herbicidas/metabolismo , Enterobacteriaceae/metabolismo , Suelo
20.
Mol Microbiol ; 82(2): 355-64, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21895789

RESUMEN

Bacteria that assimilate synthetic nitroarene compounds represent unique evolutionary models, as their metabolic pathways are in the process of adaptation and optimization for the consumption of these toxic chemicals. We used Acidovorax sp. strain JS42, which is capable of growth on nitrobenzene and 2-nitrotoluene, in experiments to examine how a nitroarene degradation pathway evolves when its host strain is challenged with direct selective pressure to assimilate non-native substrates. Although the same enzyme that initiates the degradation of nitrobenzene and 2-nitrotoluene also oxidizes 4-nitrotoluene to 4-methylcatechol, which is a growth substrate for JS42, the strain is incapable of growth on 4-nitrotoluene. Using long-term laboratory evolution experiments, we obtained JS42 mutants that gained the ability to grow on 4-nitrotoluene via a new degradation pathway. The underlying basis for this new activity resulted from the accumulation of specific mutations in the gene encoding the dioxygenase that catalyses the initial oxidation of nitroarene substrates, but at positions distal to the active site and previously unknown to affect activity in this or related enzymes. We constructed additional mutant dioxygenases to identify the order of mutations that led to the improved enzymes. Biochemical analyses revealed a defined, step-wise pathway for the evolution of the improved dioxygenases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Biológica , Comamonadaceae/metabolismo , Dioxigenasas/metabolismo , Redes y Vías Metabólicas , Tolueno/análogos & derivados , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biodegradación Ambiental , Comamonadaceae/química , Comamonadaceae/enzimología , Comamonadaceae/genética , Dioxigenasas/química , Dioxigenasas/genética , Cinética , Nitrobencenos/metabolismo , Especificidad por Sustrato , Tolueno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA