Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chaos ; 34(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377293

RESUMEN

Synchronization holds a significant role, notably within chaotic systems, in various contexts where the coordinated behavior of systems plays a pivotal and indispensable role. Hence, many studies have been dedicated to investigating the underlying mechanism of synchronization of chaotic systems. Networks with time-varying coupling, particularly those with blinking coupling, have been proven essential. The reason is that such coupling schemes introduce dynamic variations that enhance adaptability and robustness, making them applicable in various real-world scenarios. This paper introduces a novel adaptive blinking coupling, wherein the coupling adapts dynamically based on the most influential variable exhibiting the most significant average disparity. To ensure an equitable selection of the most effective coupling at each time instance, the average difference of each variable is normalized to the synchronous solution's range. Due to this adaptive coupling selection, synchronization enhancement is expected to be observed. This hypothesis is assessed within networks of identical systems, encompassing Lorenz, Rössler, Chen, Hindmarsh-Rose, forced Duffing, and forced van der Pol systems. The results demonstrated a substantial improvement in synchronization when employing adaptive blinking coupling, particularly when applying the normalization process.

2.
Chaos ; 33(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967263

RESUMEN

This paper studies the effects of a switching parameter on the dynamics of a multistable laser model. The laser model represents multistability in distinct ranges of parameters. We assume that the system's parameter switches periodically between different values. Since the system is multistable, the presence of a ghost attractor is also dependent on the initial condition. It is shown that when the composing subsystems are chaotic, a periodic ghost attractor can emerge and vice versa, depending on the initial conditions. In contrast to the previous studies in which the attractor of the fast blinking systems approximates the average attractor, here, the blinking attractor differs from the average in some cases. It is shown that when the switching parameter values are distant from their average, the blinking and the average attractors are different, and as they approach, the blinking attractor approaches the average attractor too.

3.
Chaos ; 33(3): 033103, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37003834

RESUMEN

Achieving a network structure with optimal synchronization is essential in many applications. This paper proposes an optimization algorithm for constructing a network with optimal synchronization. The introduced algorithm is based on the eigenvalues of the connectivity matrix. The performance of the proposed algorithm is compared with random link addition and a method based on the eigenvector centrality. It is shown that the proposed algorithm has a better synchronization ability than the other methods and also the scale-free and small-world networks with the same number of nodes and links. The proposed algorithm can also be applied for link reduction while less disturbing its synchronization. The effectiveness of the algorithm is compared with four other link reduction methods. The results represent that the proposed algorithm is the most appropriate method for preserving synchronization.

4.
Chaos ; 33(3): 033139, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37003805

RESUMEN

In this paper, we propose a time-varying coupling function that results in enhanced synchronization in complex networks of oscillators. The stability of synchronization can be analyzed by applying the master stability approach, which considers the largest Lyapunov exponent of the linearized variational equations as a function of the network eigenvalues as the master stability function. Here, it is assumed that the oscillators have diffusive single-variable coupling. All possible single-variable couplings are studied for each time interval, and the one with the smallest local Lyapunov exponent is selected. The obtained coupling function leads to a decrease in the critical coupling parameter, resulting in enhanced synchronization. Moreover, synchronization is achieved faster, and its robustness is increased. For illustration, the optimum coupling function is found for three networks of chaotic Rössler, Chen, and Chua systems, revealing enhanced synchronization.

5.
Chaos ; 32(1): 013125, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35105127

RESUMEN

Higher-order interactions might play a significant role in the collective dynamics of the brain. With this motivation, we here consider a simplicial complex of neurons, in particular, studying the effects of pairwise and three-body interactions on the emergence of synchronization. We assume pairwise interactions to be mediated through electrical synapses, while for second-order interactions, we separately study diffusive coupling and nonlinear chemical coupling. For all the considered cases, we derive the necessary conditions for synchronization by means of linear stability analysis, and we compute the synchronization errors numerically. Our research shows that the second-order interactions, even if of weak strength, can lead to synchronization under significantly lower first-order coupling strengths. Moreover, the overall synchronization cost is reduced due to the introduction of three-body interactions if compared to pairwise interactions.


Asunto(s)
Modelos Neurológicos , Red Nerviosa , Encéfalo , Análisis por Conglomerados , Neuronas
6.
Entropy (Basel) ; 24(12)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36554212

RESUMEN

The dynamical interplay of coupled non-identical chaotic oscillators gives rise to diverse scenarios. The incoherent dynamics of these oscillators lead to the structural impairment of attractors in phase space. This paper investigates the couplings of Lorenz-Rössler, Lorenz-HR, and Rössler-HR to identify the dominant attractor. By dominant attractor, we mean the attractor that is less changed by coupling. For comparison and similarity detection, a cost function based on the return map of the coupled systems is used. The possible effects of frequency and amplitude differences between the systems on the results are also examined. Finally, the inherent chaotic characteristic of systems is compared by computing the largest Lyapunov exponent. The results suggest that in each coupling case, the attractor with the greater largest Lyapunov exponent is dominant.

7.
Chaos ; 31(3): 033138, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33810759

RESUMEN

In this paper, we propose and study a two-layer network composed of a Petri net in the first layer and a ring of coupled Hindmarsh-Rose neurons in the second layer. Petri nets are appropriate platforms not only for describing sequential processes but also for modeling information circulation in complex systems. Networks of neurons, on the other hand, are commonly used to study synchronization and other forms of collective behavior. Thus, merging both frameworks into a single model promises fascinating new insights into neuronal collective behavior that is subject to changes in network connectivity. In our case, the Petri net in the first layer manages the existence of excitatory and inhibitory links among the neurons in the second layer, thereby making the chemical connections time-varying. We focus on the emergence of different types of collective behavior in the model, such as synchronization, chimeras, and solitary states, by considering different inhibitory and excitatory tokens in the Petri net. We find that the existence of only inhibitory or excitatory tokens disturbs the synchronization of electrically coupled neurons and leads toward chimera and solitary states.

8.
Nonlinear Dyn ; 101(1): 711-718, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32836806

RESUMEN

The outbreak of the novel coronavirus (COVID-19), which was firstly reported in China, has affected many countries worldwide. To understand and predict the transmission dynamics of this disease, mathematical models can be very effective. It has been shown that the fractional order is related to the memory effects, which seems to be more effective for modeling the epidemic diseases. Motivated by this, in this paper, we propose fractional-order susceptible individuals, asymptomatic infected, symptomatic infected, recovered, and deceased (SEIRD) model for the spread of COVID-19. We consider both classical and fractional-order models and estimate the parameters by using the real data of Italy, reported by the World Health Organization. The results show that the fractional-order model has less root-mean-square error than the classical one. Finally, the prediction ability of both of the integer- and fractional-order models is evaluated by using a test data set. The results show that the fractional model provides a closer forecast to the real data.

9.
Chaos ; 29(4): 043109, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31042930

RESUMEN

Spiral waves are particular spatiotemporal patterns connected to specific phase singularities representing topological wave dislocations or nodes of zero amplitude, witnessed in a wide range of complex systems such as neuronal networks. The appearance of these waves is linked to the network structure as well as the diffusion dynamics of its blocks. We report a novel form of the Hindmarsh-Rose neuron model utilized as a square neuronal network, showing the remarkable multistructure of dynamical patterns ranging from characteristic spiral wave domains of spatiotemporal phase coherence to regions of hyperchaos. The proposed model comprises a hyperbolic memductance function as the monotone differentiable magnetic flux. Hindmarsh-Rose neurons with an external electromagnetic excitation are considered in three different cases: no excitation, periodic excitation, and quasiperiodic excitation. We performed an extensive study of the neuronal dynamics including calculation of equilibrium points, bifurcation analysis, and Lyapunov spectrum. We have found the property of antimonotonicity in bifurcation scenarios with no excitation or periodic excitation and identified wide regions of hyperchaos in the case of quasiperiodic excitation. Furthermore, the formation and elimination of the spiral waves in each case of external excitation with respect to stimuli parameters are investigated. We have identified novel forms of Hindmarsh-Rose bursting dynamics. Our findings reveal multipartite spiral wave formations and symmetry breaking spatiotemporal dynamics of the neuronal model that may find broad practical applications.

10.
Phys Rev E ; 107(1-1): 014201, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797861

RESUMEN

A long-standing expectation is that two repulsively coupled oscillators tend to oscillate in opposite directions. It has been difficult to achieve complete synchrony in coupled identical oscillators with purely repulsive coupling. Here, we introduce a general coupling condition based on the linear matrix of dynamical systems for the emergence of the complete synchronization in pure repulsively coupled oscillators. The proposed coupling profiles (coupling matrices) define a bidirectional cross-coupling link that plays the role of indicator for the onset of complete synchrony between identical oscillators. We illustrate the proposed coupling scheme on several paradigmatic two-coupled chaotic oscillators and validate its effectiveness through the linear stability analysis of the synchronous solution based on the master stability function approach. We further demonstrate that the proposed general condition for the selection of coupling profiles to achieve synchronization even works perfectly for a large ensemble of oscillators.

11.
Math Biosci Eng ; 20(10): 17849-17865, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-38052539

RESUMEN

The significance of discrete neural models lies in their mathematical simplicity and computational ease. This research focuses on enhancing a neural map model by incorporating a hyperbolic tangent-based memristor. The study extensively explores the impact of magnetic induction strength on the model's dynamics, analyzing bifurcation diagrams and the presence of multistability. Moreover, the investigation extends to the collective behavior of coupled memristive neural maps with electrical, chemical, and magnetic connections. The synchronization of these coupled memristive maps is examined, revealing that chemical coupling exhibits a broader synchronization area. Additionally, diverse chimera states and cluster synchronized states are identified and discussed.

12.
Phys Rev E ; 105(5-1): 054304, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706266

RESUMEN

This paper studies the synchronization of a network with linear diffusive coupling, which blinks between the variables periodically. The synchronization of the blinking network in the case of sufficiently fast blinking is analyzed by showing that the stability of the synchronous solution depends only on the averaged coupling and not on the instantaneous coupling. To illustrate the effect of the blinking period on the network synchronization, the Hindmarsh-Rose model is used as the dynamics of nodes. The synchronization is investigated by considering constant single-variable coupling, averaged coupling, and blinking coupling through a linear stability analysis. It is observed that by decreasing the blinking period, the required coupling strength for synchrony is reduced. It equals that of the averaged coupling model times the number of variables. However, in the averaged coupling, all variables participate in the coupling, while in the blinking model only one variable is coupled at any time. Therefore, the blinking coupling leads to an enhanced synchronization in comparison with the single-variable coupling. Numerical simulations of the average synchronization error of the network confirm the results obtained from the linear stability analysis.

13.
Math Biosci Eng ; 18(6): 9394-9409, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34814351

RESUMEN

Map-based neuronal models have received much attention due to their high speed, efficiency, flexibility, and simplicity. Therefore, they are suitable for investigating different dynamical behaviors in neuronal networks, which is one of the recent hottest topics. Recently, the memristive version of the Rulkov model, known as the m-Rulkov model, has been introduced. This paper investigates the network of the memristive version of the Rulkov neuron map to study the effect of the memristor on collective behaviors. Firstly, two m-Rulkov neuronal models are coupled in different cases, through electrical synapses, chemical synapses, and both electrical and chemical synapses. The results show that two electrically coupled memristive neurons can become synchronous, while the previous studies have shown that two non-memristive Rulkov neurons do not synchronize when they are coupled electrically. In contrast, chemical coupling does not lead to synchronization; instead, two neurons reach the same resting state. However, the presence of both types of couplings results in synchronization. The same investigations are carried out for a network of 100 m-Rulkov models locating in a ring topology. Different firing patterns, such as synchronization, lagged-phase synchronization, amplitude death, non-stationary chimera state, and traveling chimera state, are observed for various electrical and chemical coupling strengths. Furthermore, the synchronization of neurons in the electrical coupling relies on the network's size and disappears with increasing the nodes number.


Asunto(s)
Modelos Neurológicos , Red Nerviosa , Neuronas
14.
Phys Rev E ; 100(1-1): 012315, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31499842

RESUMEN

Chimera states have been a vibrant subject of research in the recent past, but the analytical treatment of transitions from chimeras to coherent states remains a challenge. Here we analytically derive the necessary conditions for this transition by means of the coherent stability function approach, which is akin to the master stability function approach that is traditionally used to study the stability of synchronization in coupled oscillators. In chimera states, there is typically at least one group of oscillators that evolves in a drifting, random manner, while other groups of oscillators follow a smoother, more coherent profile. In the coherent state, there thus exists a smooth functional relationship between the oscillators. This lays the foundation for the coherent stability function approach, where we determine the stability of the coherent state. We subsequently test the analytical prediction numerically by calculating the strength of incoherence during the transition point. We use leech neurons, which exhibit a coexistence of chaotic and periodic tonic spiking depending on initial conditions, coupled via nonlocal electrical synapses, to demonstrate our approach. We systematically explore various dynamical states with the focus on the transitions between chimeras and coherence, fully confirming the validity of the coherent stability function. We also observe complete synchronization for higher values of the coupling strength, which we verify by the master stability function approach.

15.
Cogn Neurodyn ; 12(6): 607-614, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30483368

RESUMEN

The last two decades have seen many literatures on the mathematical and computational analysis of neuronal activities resulting in many mathematical models to describe neuron. Many of those models have described the membrane potential of a neuron in terms of the leakage current and the synaptic inputs. Only recently researchers have proposed a new neuron model based on the electromagnetic induction theorem, which considers inner magnetic fluctuation and external electromagnetic radiation as a significant missing part that can participate in neural activity. While the flux coupling of the membrane is considered equivalent to a memductance function of a memristor, standard memductance model of α + 3 ß Ï• 2 has been used in the literatures, but in this paper we propose a new memductance function based on discontinuous flux coupling. Various dynamical properties of the neuron model with discontinuous flux coupling are studied and interestingly the proposed model shows hyperchaotic behavior which was not identified in the literatures. Furthermore, we consider a ring network of the proposed model and investigate whether the chimera state can emerge. The chimera state relates to the state with simultaneously coherence and incoherence in oscillatory networks and has received much attention in recent years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA