Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 63(3): 445-56, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27373333

RESUMEN

We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology.


Asunto(s)
Proteínas Fúngicas/química , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , Yarrowia/enzimología , Adenosina Trifosfato/metabolismo , Catálisis , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/ultraestructura , Modelos Moleculares , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Subunidades de Proteína , Relación Estructura-Actividad , Yarrowia/ultraestructura
2.
Biochim Biophys Acta ; 1857(12): 1935-1942, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27693469

RESUMEN

Mitochondrial complex I is a 1MDa membrane protein complex with a central role in aerobic energy metabolism. The bioenergetic core functions are executed by 14 central subunits that are conserved from bacteria to man. Despite recent progress in structure determination, our understanding of the function of the ~30 accessory subunits associated with the mitochondrial complex is still limited. We have investigated the structure of complex I from the aerobic yeast Yarrowia lipolytica by cryo-electron microscopy. Our density map at 7.9Å resolution closely matches the 3.6-3.9Å X-ray structure of the Yarrowia lipolytica complex. However, the cryo-EM map indicated an additional subunit on the side of the matrix arm above the membrane surface, pointing away from the membrane arm. The density, which is not present in any previously described complex I structure and occurs in about 20 % of the particles, was identified as the accessory sulfur transferase subunit ST1. The Yarrowia lipolytica complex I preparation is active in generating H2S from the cysteine derivative 3-mercaptopyruvate, catalyzed by ST1. We thus provide evidence for a link between respiratory complex I and mitochondrial sulfur metabolism.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Proteínas Fúngicas/metabolismo , Mitocondrias/enzimología , Transferasas del Grupo de Azufre/metabolismo , Azufre/metabolismo , Yarrowia/enzimología , Catálisis , Cisteína/análogos & derivados , Cisteína/metabolismo , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/ultraestructura , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Transferasas del Grupo de Azufre/química , Transferasas del Grupo de Azufre/genética , Transferasas del Grupo de Azufre/ultraestructura , Yarrowia/genética , Yarrowia/ultraestructura
3.
Proc Natl Acad Sci U S A ; 108(7): 2981-6, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21262829

RESUMEN

In methanogenic archaea growing on H(2) and CO(2) the first step in methanogenesis is the ferredoxin-dependent endergonic reduction of CO(2) with H(2) to formylmethanofuran and the last step is the exergonic reduction of the heterodisulfide CoM-S-S-CoB with H(2) to coenzyme M (CoM-SH) and coenzyme B (CoB-SH). We recently proposed that in hydrogenotrophic methanogens the two reactions are energetically coupled via the cytoplasmic MvhADG/HdrABC complex. It is reported here that the purified complex from Methanothermobacter marburgensis catalyzes the CoM-S-S-CoB-dependent reduction of ferredoxin with H(2). Per mole CoM-S-S-CoB added, 1 mol of ferredoxin (Fd) was reduced, indicating an electron bifurcation coupling mechanism: 2H(2) + Fd(OX) + CoM-S-S-CoB-->Fd(red)(2-) + CoM-SH + CoB-SH + 2H(+). This stoichiometry of coupling is consistent with an ATP gain per mole methane from 4 H(2) and CO(2) of near 0.5 deduced from an H(2)-threshold concentration of 8 Pa and a growth yield of up to 3 g/mol methane.


Asunto(s)
Dióxido de Carbono/metabolismo , Disulfuros/metabolismo , Ferredoxinas/metabolismo , Hidrógeno/metabolismo , Metano/biosíntesis , Methanobacteriaceae/metabolismo , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Mesna/metabolismo , Metronidazol , Oxidación-Reducción , Fosfotreonina/análogos & derivados , Fosfotreonina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Cell Rep ; 43(8): 114627, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39167489

RESUMEN

Sphingolipid levels are crucial determinants of neurodegenerative disorders and therefore require tight regulation. The Orm protein family and ceramides inhibit the rate-limiting step of sphingolipid biosynthesis-the condensation of L-serine and palmitoyl-coenzyme A (CoA). The yeast isoforms Orm1 and Orm2 form a complex with the serine palmitoyltransferase (SPT). While Orm1 and Orm2 have highly similar sequences, they are differentially regulated, though the mechanistic details remain elusive. Here, we determine the cryoelectron microscopy structure of the SPT complex containing Orm2. Complementary in vitro activity assays and genetic experiments with targeted lipidomics demonstrate a lower activity of the SPT-Orm2 complex than the SPT-Orm1 complex. Our results suggest a higher inhibitory potential of Orm2, despite the similar structures of the Orm1- and Orm2-containing complexes. The high conservation of SPT from yeast to man implies different regulatory capacities for the three human ORMDL isoforms, which might be key for understanding their role in sphingolipid-mediated neurodegenerative disorders.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Serina C-Palmitoiltransferasa , Serina C-Palmitoiltransferasa/metabolismo , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Esfingolípidos/biosíntesis , Humanos , Unión Proteica
5.
Elife ; 122024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38259172

RESUMEN

P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Translocación Genética , Humanos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP , Mutación
6.
Nat Commun ; 15(1): 1831, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418462

RESUMEN

Here we describe the cryo-electron microscopy structure of the human histamine 2 receptor (H2R) in an active conformation with bound histamine and in complex with Gs heterotrimeric protein at an overall resolution of 3.4 Å. The complex was generated by cotranslational insertion of the receptor into preformed nanodisc membranes using cell-free synthesis in E. coli lysates. Structural comparison with the inactive conformation of H2R and the inactive and Gq-coupled active state of H1R together with structure-guided functional experiments reveal molecular insights into the specificity of ligand binding and G protein coupling for this receptor family. We demonstrate lipid-modulated folding of cell-free synthesized H2R, its agonist-dependent internalization and its interaction with endogenously synthesized H1R and H2R in HEK293 cells by applying a recently developed nanotransfer technique.


Asunto(s)
Escherichia coli , Histamina , Humanos , Histamina/metabolismo , Microscopía por Crioelectrón , Células HEK293 , Escherichia coli/metabolismo , Receptores Histamínicos H2/metabolismo
7.
J Biol Inorg Chem ; 18(8): 905-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24037219

RESUMEN

Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31-39CCX35-36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) (57)Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four (57)Fe hyperfine couplings to the cluster in all three proteins. (13)C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. (57)Fe resonances in all three systems revealed unusually large (57)Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster's unique magnetic properties arise from the CCG binding motif.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Methanobacteriaceae/enzimología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidorreductasas/metabolismo , Ácido Succínico/metabolismo , Sulfolobus solfataricus/enzimología , Secuencia de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/química , Methanobacteriaceae/química , Methanobacteriaceae/metabolismo , Datos de Secuencia Molecular , NAD(P)H Deshidrogenasa (Quinona)/química , Oxidorreductasas/química , Unión Proteica , Estructura Terciaria de Proteína , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo
8.
Nat Commun ; 14(1): 6196, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794019

RESUMEN

Sphingolipids are structural membrane components that also function in cellular stress responses. The serine palmitoyltransferase (SPT) catalyzes the rate-limiting step in sphingolipid biogenesis. Its activity is tightly regulated through multiple binding partners, including Tsc3, Orm proteins, ceramides, and the phosphatidylinositol-4-phosphate (PI4P) phosphatase Sac1. The structural organization and regulatory mechanisms of this complex are not yet understood. Here, we report the high-resolution cryo-EM structures of the yeast SPT in complex with Tsc3 and Orm1 (SPOT) as dimers and monomers and a monomeric complex further carrying Sac1 (SPOTS). In all complexes, the tight interaction of the downstream metabolite ceramide and Orm1 reveals the ceramide-dependent inhibition. Additionally, observation of ceramide and ergosterol binding suggests a co-regulation of sphingolipid biogenesis and sterol metabolism within the SPOTS complex.


Asunto(s)
Ceramidas , Proteínas de Saccharomyces cerevisiae , Ceramidas/metabolismo , Esfingolípidos/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Sci Adv ; 8(41): eabn6845, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36223470

RESUMEN

Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Escherichia coli , Escherichia coli , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Detergentes/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Lípido A , Liposomas/metabolismo , Proteínas de la Membrana/metabolismo , Conformación Proteica
10.
Sci Adv ; 7(46): eabj3221, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767441

RESUMEN

Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a 1-MDa membrane protein complex with a central role in energy metabolism. Redox-driven proton translocation by complex I contributes substantially to the proton motive force that drives ATP synthase. Several structures of complex I from bacteria and mitochondria have been determined, but its catalytic mechanism has remained controversial. We here present the cryo-EM structure of complex I from Yarrowia lipolytica at 2.1-Å resolution, which reveals the positions of more than 1600 protein-bound water molecules, of which ~100 are located in putative proton translocation pathways. Another structure of the same complex under steady-state activity conditions at 3.4-Å resolution indicates conformational transitions that we associate with proton injection into the central hydrophilic axis. By combining high-resolution structural data with site-directed mutagenesis and large-scale molecular dynamic simulations, we define details of the proton translocation pathways and offer insights into the redox-coupled proton pumping mechanism of complex I.

11.
Nat Microbiol ; 6(9): 1129-1139, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34267357

RESUMEN

Nitrate is an abundant nutrient and electron acceptor throughout Earth's biosphere. Virtually all nitrate in nature is produced by the oxidation of nitrite by the nitrite oxidoreductase (NXR) multiprotein complex. NXR is a crucial enzyme in the global biological nitrogen cycle, and is found in nitrite-oxidizing bacteria (including comammox organisms), which generate the bulk of the nitrate in the environment, and in anaerobic ammonium-oxidizing (anammox) bacteria which produce half of the dinitrogen gas in our atmosphere. However, despite its central role in biology and decades of intense study, no structural information on NXR is available. Here, we present a structural and biochemical analysis of the NXR from the anammox bacterium Kuenenia stuttgartiensis, integrating X-ray crystallography, cryo-electron tomography, helical reconstruction cryo-electron microscopy, interaction and reconstitution studies and enzyme kinetics. We find that NXR catalyses both nitrite oxidation and nitrate reduction, and show that in the cell, NXR is arranged in tubules several hundred nanometres long. We reveal the tubule architecture and show that tubule formation is induced by a previously unidentified, haem-containing subunit, NXR-T. The results also reveal unexpected features in the active site of the enzyme, an unusual cofactor coordination in the protein's electron transport chain, and elucidate the electron transfer pathways within the complex.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Cinética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética
12.
Biochemistry ; 49(41): 8912-21, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20822098

RESUMEN

A vital process in the biogeochemical sulfur cycle is the dissimilatory sulfate reduction pathway in which sulfate (SO4⁻²) is converted to hydrogen sulfide (H2S). Dissimilatory sulfite reductase (dSir), its key enzyme, hosts a unique siroheme-[4Fe-4S] cofactor and catalyzes the six-electron reduction of sulfite (SO3²â») to H2S. To explore this reaction, we determined the X-ray structures of dSir from the archaeon Archaeoglobus fulgidus in complex with sulfite, sulfide (S²â») carbon monoxide (CO), cyanide (CN⁻), nitrite (NO2⁻), nitrate (NO3⁻), and phosphate (PO4³â»). Activity measurements indicated that dSir of A. fulgidus reduces, besides sulfite and nitrite, thiosulfate (S2O3²â») and trithionate (S3O6²â») and produces the latter two compounds besides sulfide. On this basis, a three-step mechanism was proposed, each step consisting of a two-electron transfer, a two-proton uptake, and a dehydration event. In comparison, the related active site structures of the assimilatory sulfite reductase (aSir)- and dSir-SO3²â»complexes reveal different conformations of Argα170 and Lysα211 both interacting with the sulfite oxygens (its sulfur atom coordinates the siroheme iron), a sulfite rotation of ~60° relative to each other, and different access of solvent molecules to the sulfite oxygens from the active site cleft. Therefore, solely in dSir a further sulfite molecule can be placed in van der Waals contact with the siroheme-ligated sulfite or sulfur-oxygen intermediates necessary for forming thiosulfate and trithionate. Although reported for dSir from several sulfate-reducing bacteria, the in vivo relevance of their formation is questionable.


Asunto(s)
Proteínas Arqueales/química , Archaeoglobus fulgidus/enzimología , Hidrogenosulfito Reductasa/química , Sulfitos/química , Dominio Catalítico , Cristalografía por Rayos X , Electrones , Relación Estructura-Actividad , Especificidad por Sustrato
13.
Curr Opin Struct Biol ; 63: 1-9, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32058886

RESUMEN

Respiratory complex I is an intricate multi-subunit membrane protein with a central function in aerobic energy metabolism. During the last years, structures of mitochondrial complex I and respiratory supercomplexes were determined by cryo-EM at increasing resolution. Structural and computational studies have shed light on the dynamics of proton translocation pathways, the interaction of complex I with lipids and the unusual access pathway of ubiquinone to the active site. Recent advances in understanding complex I function include characterization of specific conformational changes that are critical for proton pumping. Cryo-EM structures of the NADH dehydrogenase-like (NDH) complex of photosynthesis and a bacterial membrane bound hydrogenase (MBH) have provided a broader perspective on the complex I superfamily.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Animales , Sitios de Unión , Evolución Biológica , Catálisis , Humanos , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato , Agua/química
14.
Biochim Biophys Acta Bioenerg ; 1861(3): 148153, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935361

RESUMEN

Complex I is the largest and most intricate redox-driven proton pump of the respiratory chain. The structure of bacterial and mitochondrial complex I has been determined by X-ray crystallography and cryo-EM at increasing resolution. The recent cryo-EM structures of the complex I-like NDH complex and membrane bound hydrogenase open a new and more comprehensive perspective on the complex I superfamily. Functional studies and molecular modeling approaches have greatly advanced our understanding of the catalytic cycle of complex I. However, the molecular mechanism by which energy is extracted from the redox reaction and utilized to drive proton translocation is unresolved and a matter of ongoing debate. Here, we review progress in structure determination and functional characterization of complex I and discuss current mechanistic models.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Oxidación-Reducción , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Protones , Ubiquinona/química , Ubiquinona/metabolismo
15.
Nat Commun ; 11(1): 6008, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243981

RESUMEN

Respiratory complex I catalyzes electron transfer from NADH to ubiquinone (Q) coupled to vectorial proton translocation across the inner mitochondrial membrane. Despite recent progress in structure determination of this very large membrane protein complex, the coupling mechanism is a matter of ongoing debate and the function of accessory subunits surrounding the canonical core subunits is essentially unknown. Concerted rearrangements within a cluster of conserved loops of central subunits NDUFS2 (ß1-ß2S2 loop), ND1 (TMH5-6ND1 loop) and ND3 (TMH1-2ND3 loop) were suggested to be critical for its proton pumping mechanism. Here, we show that stabilization of the TMH1-2ND3 loop by accessory subunit LYRM6 (NDUFA6) is pivotal for energy conversion by mitochondrial complex I. We determined the high-resolution structure of inactive mutant F89ALYRM6 of eukaryotic complex I from the yeast Yarrowia lipolytica and found long-range structural changes affecting the entire loop cluster. In atomistic molecular dynamics simulations of the mutant, we observed conformational transitions in the loop cluster that disrupted a putative pathway for delivery of substrate protons required in Q redox chemistry. Our results elucidate in detail the essential role of accessory subunit LYRM6 for the function of eukaryotic complex I and offer clues on its redox-linked proton pumping mechanism.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades de Proteína/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/ultraestructura , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Subunidades de Proteína/genética , Protones , Ubiquinona/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
16.
ACS Nano ; 14(7): 8181-8190, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32551529

RESUMEN

Well-defined multiwalled carbon nanotube structures are generated on stainless steel AISI 304 (EN AW 1.4301) by chemical vapor deposition. Pulsed laser-induced dewetting (PLiD) of the surface, by 532 nm nanosecond laser pulses, is utilized for the preparation of metal oxide nanoparticle fields with a defined particle number per area. The reduction of the precursor particles is achieved in an Ar/H2 (10% H2) atmosphere at 750 °C, thereby generating catalytic nanoparticles (c-NPs) for carbon nanotube (CNT) growth. Ethylene is used as a precursor gas for CNT growth. CNT lengths and morphology are directly related to the c-NP aerial density, which is dependent on the number of dewetting cycles during the PLiD process. Within a narrow window of c-NP per area, vertically aligned carbon nanotubes of great lengths are obtained. For more intense laser treatments, three-dimensional dewetting occurs and results in the formation of cauliflower-like structures. The laser process enables the creation of all kinds of CNT morphologies nearby on the microscale.

17.
ACS Nano ; 14(8): 9972-9978, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32589396

RESUMEN

Transmission electron cryo-microscopy (cryoEM) of vitrified biological specimens is a powerful tool for structural biology. Current preparation of vitrified biological samples starts off with sample isolation and purification, followed by the fixation in a freestanding layer of amorphous ice. Here, we demonstrate that ultrathin (∼10 nm) smart molecular nanosheets having specific biorecognition sites embedded in a biorepulsive layer covalently bound to a mechanically stable carbon nanomembrane allow for a much simpler isolation and structural analysis. We characterize in detail the engineering of these nanosheets and their biorecognition properties employing complementary methods such as X-ray photoelectron and infrared spectroscopy, atomic force microscopy as well as surface plasmon resonance measurements. The desired functionality of the developed nanosheets is demonstrated by in situ selection of a His-tagged protein from a mixture and its subsequent structural analysis by cryoEM.


Asunto(s)
Carbono , Electrones , Microscopía por Crioelectrón , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión
18.
ACS Nano ; 13(6): 7185-7190, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31117383

RESUMEN

In electron cryo-microscopy, structure determination of protein molecules is frequently hampered by adsorption of the particles to the support film material, typically amorphous carbon. Here, we report that pyrene derivatives with one or two polyglycerol (PG) side chains bind to the amorphous carbon films, forming a biorepulsive hydrogel layer so that the number of protein particles in the vitreous ice drastically increases. This approach could be extended by adding a hydrogel-functionalized carbon nanotube network (HyCaNet, the hydrogel again being formed from the PG-pyrene derivatives), which stabilized the protein-containing thin ice films during imaging with the electron beam. The stabilization resulted in reduced particle motion by up to 70%. These substrates were instrumental for determining the structure of a large membrane protein complex.


Asunto(s)
Microscopía por Crioelectrón/métodos , Hidrogeles/química , Proteínas de la Membrana/química , Detergentes/química , Glicerol/química , Proteínas de la Membrana/ultraestructura , Nanotubos/química , Polímeros/química , Estabilidad Proteica , Pirenos/química , Vitrificación
19.
Sci Adv ; 5(12): eaax9484, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31844670

RESUMEN

Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-Å resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/ultraestructura , Mitocondrias/ultraestructura , Yarrowia/ultraestructura , Adenosina Trifosfato/química , Complejo I de Transporte de Electrón/genética , Humanos , Mitocondrias/genética , Membranas Mitocondriales , Conformación Proteica , Yarrowia/genética
20.
Elife ; 72018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277212

RESUMEN

Mitochondrial complex I has a key role in cellular energy metabolism, generating a major portion of the proton motive force that drives aerobic ATP synthesis. The hydrophilic arm of the L-shaped ~1 MDa membrane protein complex transfers electrons from NADH to ubiquinone, providing the energy to drive proton pumping at distant sites in the membrane arm. The critical steps of energy conversion are associated with the redox chemistry of ubiquinone. We report the cryo-EM structure of complete mitochondrial complex I from the aerobic yeast Yarrowia lipolytica both in the deactive form and after capturing the enzyme during steady-state activity. The site of ubiquinone binding observed during turnover supports a two-state stabilization change mechanism for complex I.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Proteínas Fúngicas/metabolismo , Mitocondrias/metabolismo , Yarrowia/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/ultraestructura , Metabolismo Energético , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestructura , Mitocondrias/ultraestructura , Modelos Moleculares , Oxidación-Reducción , Consumo de Oxígeno , Conformación Proteica , Fuerza Protón-Motriz , Homología de Secuencia de Aminoácido , Yarrowia/genética , Yarrowia/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA