Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 187(2): 428-445.e20, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38086389

RESUMEN

A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-ß (Aß) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aß plaques, which suppresses Aß-induced tau seeding and spreading. The results reveal new possibilities to target Aß-induced tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E3 , Proteínas tau , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Informes de Casos como Asunto
2.
Semin Immunol ; 59: 101594, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232622

RESUMEN

Neuroinflammation is a central mechanism involved in neurodegeneration as observed in Alzheimer's disease (AD), the most prevalent form of neurodegenerative disease. Apolipoprotein E4 (APOE4), the strongest genetic risk factor for AD, directly influences disease onset and progression by interacting with the major pathological hallmarks of AD including amyloid-ß plaques, neurofibrillary tau tangles, as well as neuroinflammation. Microglia and astrocytes, the two major immune cells in the brain, exist in an immune-vigilant state providing immunological defense as well as housekeeping functions that promote neuronal well-being. It is becoming increasingly evident that under disease conditions, these immune cells become progressively dysfunctional in regulating metabolic and immunoregulatory pathways, thereby promoting chronic inflammation-induced neurodegeneration. Here, we review and discuss how APOE and specifically APOE4 directly influences amyloid-ß and tau pathology, and disrupts microglial as well as astroglial immunomodulating functions leading to chronic inflammation that contributes to neurodegeneration in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Enfermedades Neuroinflamatorias , Inflamación/patología
3.
Glia ; 69(12): 2917-2932, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34427354

RESUMEN

Rare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid ß peptides (Aß). Aß peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aß variants that could differ in their aggregation behavior and toxic properties. Here, we sought to assess whether post-translational modifications of Aß affect the interaction with TREM2. Biophysical and biochemical methods revealed that TREM2 preferentially interacts with oligomeric Aß, and that phosphorylation of Aß increases this interaction. Phosphorylation of Aß also affected the TREM2 dependent interaction and phagocytosis by primary microglia and in APP transgenic mouse models. Thus, TREM2 function is important for sensing phosphorylated Aß variants in distinct aggregation states and reduces the accumulation and deposition of these toxic Aß species in preclinical models of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Microglía , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
4.
EMBO J ; 36(13): 1837-1853, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28559417

RESUMEN

Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD-like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock-in mouse model for the disease-associated Trem2 p.T66M mutation. Consistent with a loss-of-function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock-in mice show delayed resolution of inflammation upon in vivo lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with in vivo TSPO small animal positron emission tomography (µPET) demonstrates an age-dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG-µPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss-of-function mutation causes brain-wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism.


Asunto(s)
Encéfalo/patología , Demencia Frontotemporal/patología , Glucosa/metabolismo , Glicoproteínas de Membrana/genética , Microglía/fisiología , Mutación Missense , Perfusión , Receptores Inmunológicos/genética , Animales , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Ratones , Proteínas Mutantes/genética , Tomografía de Emisión de Positrones
5.
Acta Neuropathol ; 127(5): 667-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24531916

RESUMEN

Intracellular inclusions composed of hyperphosphorylated filamentous tau are a hallmark of Alzheimer's disease, progressive supranuclear palsy, Pick's disease and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates do not only seed further tau aggregation within neurons, but can also spread to neighbouring cells and functionally connected brain regions. This process is referred to as 'tau propagation' and may explain the stereotypic progression of tau pathology in the brains of Alzheimer's disease patients. Here, we describe a novel in vivo model of tau propagation using human P301S tau transgenic mice infused unilaterally with brain extract containing tau aggregates. Infusion-related neurofibrillary tangle pathology was first observed 2 weeks post-infusion and increased in a stereotypic, time-dependent manner. Contralateral and anterior/posterior spread of tau pathology was also evident in nuclei with strong synaptic connections (efferent and afferent) to the site of infusion, indicating that spread was dependent on synaptic connectivity rather than spatial proximity. This notion was further supported by infusion-related tau pathology in white matter tracts that interconnect these regions. The rapid and robust propagation of tau pathology in this model will be valuable for both basic research and the drug discovery process.


Asunto(s)
Encéfalo/patología , Ovillos Neurofibrilares/patología , Tauopatías/patología , Proteínas tau/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inmunohistoquímica , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Ovillos Neurofibrilares/metabolismo , Distribución Aleatoria , Sinapsis/metabolismo , Sinapsis/patología , Tauopatías/metabolismo , Factores de Tiempo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Proteínas tau/genética
6.
Mol Neurodegener ; 19(1): 18, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38365827

RESUMEN

It has recently become well-established that there is a connection between Alzheimer's disease pathology and gut microbiome dysbiosis. We have previously demonstrated that antibiotic-mediated gut microbiota perturbations lead to attenuation of Aß deposition, phosphorylated tau accumulation, and disease-associated glial cell phenotypes in a sex-dependent manner. In this regard, we were intrigued by the finding that a marine-derived oligosaccharide, GV-971, was reported to alter gut microbiota and reduce Aß amyloidosis in the 5XFAD mouse model that were treated at a point when Aß burden was near plateau levels. Utilizing comparable methodologies, but with distinct technical and temporal features, we now report on the impact of GV-971 on gut microbiota, Aß amyloidosis and microglial phenotypes in the APPPS1-21 model, studies performed at the University of Chicago, and independently in the 5X FAD model, studies performed at Washington University, St. Louis.Methods To comprehensively characterize the effects of GV-971 on the microbiota-microglia-amyloid axis, we conducted two separate investigations at independent institutions. There was no coordination of the experimental design or execution between the two laboratories. Indeed, the two laboratories were not aware of each other's experiments until the studies were completed. Male and female APPPS1-21 mice were treated daily with 40, 80, or 160 mg/kg of GV-971 from 8, when Aß burden was detectable upto 12 weeks of age when Aß burden was near maximal levels. In parallel, and to corroborate existing published studies and further investigate sex-related differences, male and female 5XFAD mice were treated daily with 100 mg/kg of GV-971 from 7 to 9 months of age when Aß burden was near peak levels. Subsequently, the two laboratories independently assessed amyloid-ß deposition, metagenomic, and neuroinflammatory profiles. Finally, studies were initiated at the University of Chicago to evaluate the metabolites in cecal tissue from vehicle and GV-971-treated 5XFAD mice.Results These studies showed that independent of the procedural differences (dosage, timing and duration of treatment) between the two laboratories, cerebral amyloidosis was reduced primarily in male mice, independent of strain. We also observed sex-specific microbiota differences following GV-971 treatment. Interestingly, GV-971 significantly altered multiple overlapping bacterial species at both institutions. Moreover, we discovered that GV-971 significantly impacted microbiome metabolism, particularly by elevating amino acid production and influencing the tryptophan pathway. The metagenomics and metabolomics changes correspond with notable reductions in peripheral pro-inflammatory cytokine and chemokine profiles. Furthermore, GV-971 treatment dampened astrocyte and microglia activation, significantly decreasing plaque-associated reactive microglia while concurrently increasing homeostatic microglia only in male mice. Bulk RNAseq analysis unveiled sex-specific changes in cerebral cortex transcriptome profiles, but most importantly, the transcriptome changes in the GV-971-treated male group revealed the involvement of microglia and inflammatory responses.Conclusions In conclusion, these studies demonstrate the connection between the gut microbiome, neuroinflammation, and Alzheimer's disease pathology while highlighting the potential therapeutic effect of GV-971. GV-971 targets the microbiota-microglia-amyloid axis, leading to the lowering of plaque pathology and neuroinflammatory signatures in a sex-dependent manner when given at the onset of Aß deposition or when given after Aß deposition is already at higher levels.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Microbioma Gastrointestinal , Humanos , Ratones , Masculino , Femenino , Animales , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Ratones Transgénicos , Amiloidosis/metabolismo , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/patología , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Modelos Animales de Enfermedad
7.
Mol Neurodegener ; 19(1): 64, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238030

RESUMEN

BACKGROUND: Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS: To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS: Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION: Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Disfunción Cognitiva , Microglía , Animales , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Disfunción Cognitiva/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Tomografía de Emisión de Positrones , Receptores de GABA/metabolismo , Masculino , Ratones Transgénicos , Conectoma/métodos , Femenino
8.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37279069

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. The APOE-ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset AD. The APOE genotype modulates the effect of sleep disruption on AD risk, suggesting a possible link between apoE and sleep in AD pathogenesis, which is relatively unexplored. We hypothesized that apoE modifies Aß deposition and Aß plaque-associated tau seeding and spreading in the form of neuritic plaque-tau (NP-tau) pathology in response to chronic sleep deprivation (SD) in an apoE isoform-dependent fashion. To test this hypothesis, we used APPPS1 mice expressing human APOE-ε3 or -ε4 with or without AD-tau injection. We found that SD in APPPS1 mice significantly increased Aß deposition and peri-plaque NP-tau pathology in the presence of APOE4 but not APOE3. SD in APPPS1 mice significantly decreased microglial clustering around plaques and aquaporin-4 (AQP4) polarization around blood vessels in the presence of APOE4 but not APOE3. We also found that sleep-deprived APPPS1:E4 mice injected with AD-tau had significantly altered sleep behaviors compared with APPPS1:E3 mice. These findings suggest that the APOE-ε4 genotype is a critical modifier in the development of AD pathology in response to SD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Humanos , Animales , Apolipoproteína E4/genética , Péptidos beta-Amiloides/genética , Apolipoproteínas E , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E3/genética , Placa Amiloide/genética , Placa Amiloide/patología , Sueño/genética
9.
Sci Transl Med ; 15(693): eade6285, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099634

RESUMEN

Sleep loss is associated with cognitive decline in the aging population and is a risk factor for Alzheimer's disease (AD). Considering the crucial role of immunomodulating genes such as that encoding the triggering receptor expressed on myeloid cells type 2 (TREM2) in removing pathogenic amyloid-ß (Aß) plaques and regulating neurodegeneration in the brain, our aim was to investigate whether and how sleep loss influences microglial function in mice. We chronically sleep-deprived wild-type mice and the 5xFAD mouse model of cerebral amyloidosis, expressing either the humanized TREM2 common variant, the loss-of-function R47H AD-associated risk variant, or without TREM2 expression. Sleep deprivation not only enhanced TREM2-dependent Aß plaque deposition compared with 5xFAD mice with normal sleeping patterns but also induced microglial reactivity that was independent of the presence of parenchymal Aß plaques. We investigated lysosomal morphology using transmission electron microscopy and found abnormalities particularly in mice without Aß plaques and also observed lysosomal maturation impairments in a TREM2-dependent manner in both microglia and neurons, suggesting that changes in sleep modified neuro-immune cross-talk. Unbiased transcriptome and proteome profiling provided mechanistic insights into functional pathways triggered by sleep deprivation that were unique to TREM2 and Aß pathology and that converged on metabolic dyshomeostasis. Our findings highlight that sleep deprivation directly affects microglial reactivity, for which TREM2 is required, by altering the metabolic ability to cope with the energy demands of prolonged wakefulness, leading to further Aß deposition, and underlines the importance of sleep modulation as a promising future therapeutic approach.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Animales , Microglía/metabolismo , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Privación de Sueño/patología , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Placa Amiloide/patología , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
10.
J Nucl Med ; 63(1): 117-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34016733

RESUMEN

ß-amyloid (Aß) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aß PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar and nonfibrillar Aß components to the in vivo Aß PET signal remain unclear. Thus, we obtained 2 murine cerebral amyloidosis models that present with distinct Aß plaque compositions and performed regression analysis between immunohistochemistry and Aß PET to determine the biochemical contributions to Aß PET signal in vivo. Methods: We investigated groups of AppNL-G-F and APPPS1 mice at 3, 6, and 12 mo of age by longitudinal 18F-florbetaben Aß PET and with immunohistochemical analysis of the fibrillar and total Aß burdens. We then applied group-level intermodality regression models using age- and genotype-matched sets of fibrillar and nonfibrillar Aß data (predictors) and Aß PET results (outcome) for both Aß mouse models. An independent group of double-hit APPPS1 mice with dysfunctional microglia due to knockout of triggering receptor expression on myeloid cells 2 (Trem2-/-) served for validation and evaluation of translational impact. Results: Neither fibrillar nor nonfibrillar Aß content alone sufficed to explain the Aß PET findings in either AD model. However, a regression model compiling fibrillar and nonfibrillar Aß together with the estimate of individual heterogeneity and age at scanning could explain a 93% of variance of the Aß PET signal (P < 0.001). Fibrillar Aß burden had a 16-fold higher contribution to the Aß PET signal than nonfibrillar Aß. However, given the relatively greater abundance of nonfibrillar Aß, we estimate that nonfibrillar Aß produced 79% ± 25% of the net in vivo Aß PET signal in AppNL-G-F mice and 25% ± 12% in APPPS1 mice. Corresponding results in separate groups of APPPS1/Trem2-/- and APPPS1/Trem2+/+ mice validated the calculated regression factors and revealed that the altered fibrillarity due to Trem2 knockout impacts the Aß PET signal. Conclusion: Taken together, the in vivo Aß PET signal derives from the composite of fibrillar and nonfibrillar Aß plaque components. Although fibrillar Aß has inherently higher PET tracer binding, the greater abundance of nonfibrillar Aß plaque in AD-model mice contributes importantly to the PET signal.


Asunto(s)
Placa Amiloide
11.
J Exp Med ; 218(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34100905

RESUMEN

In Alzheimer's disease (AD) models, AD risk variants in the microglial-expressed TREM2 gene decrease Aß plaque-associated microgliosis and increase neuritic dystrophy as well as plaque-associated seeding and spreading of tau aggregates. Whether this Aß-enhanced tau seeding/spreading is due to loss of microglial function or a toxic gain of function in TREM2-deficient microglia is unclear. Depletion of microglia in mice with established brain amyloid has no effect on amyloid but results in less spine and neuronal loss. Microglial repopulation in aged mice improved cognitive and neuronal deficits. In the context of AD pathology, we asked whether microglial removal and repopulation decreased Aß-driven tau seeding and spreading. We show that both TREM2KO and microglial ablation dramatically enhance tau seeding and spreading around plaques. Interestingly, although repopulated microglia clustered around plaques, they had a reduction in disease-associated microglia (DAM) gene expression and elevated tau seeding/spreading. Together, these data suggest that TREM2-dependent activation of the DAM phenotype is essential in delaying Aß-induced pathological tau propagation.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Proteínas tau/metabolismo , Animales , Apolipoproteínas E/metabolismo , Homeostasis , Macrófagos/metabolismo , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/metabolismo , Ratones Noqueados , Neuritas/metabolismo , Neuritas/patología , Fenotipo , Placa Amiloide/patología , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/metabolismo
12.
Acta Neuropathol Commun ; 9(1): 168, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663480

RESUMEN

Progressive accumulation of Amyloid-ß (Aß) deposits in the brain is a characteristic neuropathological hallmark of Alzheimer's disease (AD). During disease progression, extracellular Aß plaques undergo specific changes in their composition by the sequential deposition of different modified Aß species. Microglia are implicated in the restriction of amyloid deposits and play a major role in internalization and degradation of Aß. Recent studies showed that rare variants of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) are associated with an increased risk for AD. Post-translational modifications of Aß could modulate the interaction with TREM2, and the uptake by microglia. Here, we demonstrate that genetic deletion of TREM2 or expression of a disease associated TREM2 variant in mice lead to differential accumulation of modified and non-modified Aß species in extracellular plaques and intraneuronal deposits. Human brains with rare TREM2 AD risk variants also showed altered deposition of modified Aß species in the different brain lesions as compared to cases with the common variant of TREM2. These findings indicate that TREM2 plays a critical role in the development and the composition of Aß deposits, not only in extracellular plaques, but also intraneuronally, that both could contribute to the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuronas/patología , Placa Amiloide/patología , Receptores Inmunológicos/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/química , Animales , Femenino , Humanos , Masculino , Glicoproteínas de Membrana/genética , Ratones , Placa Amiloide/química , Receptores Inmunológicos/genética
13.
Elife ; 102021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33845942

RESUMEN

Previous studies have identified a crucial role of the gut microbiome in modifying Alzheimer's disease (AD) progression. However, the mechanisms of microbiome-brain interaction in AD were so far unknown. Here, we identify microbiota-derived short chain fatty acids (SCFA) as microbial metabolites which promote Aß deposition. Germ-free (GF) AD mice exhibit a substantially reduced Aß plaque load and markedly reduced SCFA plasma concentrations; conversely, SCFA supplementation to GF AD mice increased the Aß plaque load to levels of conventionally colonized (specific pathogen-free [SPF]) animals and SCFA supplementation to SPF mice even further exacerbated plaque load. This was accompanied by the pronounced alterations in microglial transcriptomic profile, including upregulation of ApoE. Despite increased microglial recruitment to Aß plaques upon SCFA supplementation, microglia contained less intracellular Aß. Taken together, our results demonstrate that microbiota-derived SCFA are critical mediators along the gut-brain axis which promote Aß deposition likely via modulation of the microglial phenotype.


Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Microglía/metabolismo , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Femenino , Masculino , Ratones , Organismos Libres de Patógenos Específicos
14.
Mol Neurodegener ; 15(1): 52, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917267

RESUMEN

BACKGROUND: Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer's disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. METHODS: To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. RESULTS: Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. CONCLUSION: The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Fosfolipasa C gamma/genética , Animales , Técnicas de Sustitución del Gen , Variación Genética , Humanos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Fosfolipasa C gamma/inmunología
15.
EMBO Mol Med ; 12(2): e10919, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31858749

RESUMEN

The C9orf72 repeat expansion is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD). Non-canonical translation of the expanded repeat results in abundant poly-GA inclusion pathology throughout the CNS. (GA)149 -CFP expression in mice triggers motor deficits and neuroinflammation. Since poly-GA is transmitted between cells, we investigated the therapeutic potential of anti-GA antibodies by vaccinating (GA)149 -CFP mice. To overcome poor immunogenicity, we compared the antibody response of multivalent ovalbumin-(GA)10 conjugates and pre-aggregated carrier-free (GA)15 . Only ovalbumin-(GA)10 immunization induced a strong anti-GA response. The resulting antisera detected poly-GA aggregates in cell culture and patient tissue. Ovalbumin-(GA)10 immunization largely rescued the motor function in (GA)149 -CFP transgenic mice and reduced poly-GA inclusions. Transcriptome analysis showed less neuroinflammation in ovalbumin-(GA)10 -immunized poly-GA mice, which was corroborated by semiquantitative and morphological analysis of microglia/macrophages. Moreover, cytoplasmic TDP-43 mislocalization and levels of the neurofilament light chain in the CSF were reduced, suggesting neuroaxonal damage is reduced. Our data suggest that immunotherapy may be a viable primary prevention strategy for ALS/FTD in C9orf72 mutation carriers.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72/genética , Demencia Frontotemporal , Microglía , Esclerosis Amiotrófica Lateral/terapia , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Vacunación
16.
J Nucl Med ; 61(12): 1825-1831, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32414948

RESUMEN

Asymmetries of amyloid-ß (Aß) burden are well known in Alzheimer disease (AD) but did not receive attention in Aß mouse models of Alzheimer disease. Therefore, we investigated Aß asymmetries in Aß mouse models examined by Aß small-animal PET and tested if such asymmetries have an association with microglial activation. Methods: We analyzed 523 cross-sectional Aß PET scans of 5 different Aß mouse models (APP/PS1, PS2APP, APP-SL70, AppNL-G-F , and APPswe) together with 136 18-kDa translocator protein (TSPO) PET scans for microglial activation. The asymmetry index (AI) was calculated between tracer uptake in both hemispheres. AIs of Aß PET were analyzed in correlation with TSPO PET AIs. Extrapolated required sample sizes were compared between analyses of single and combined hemispheres. Results: Relevant asymmetries of Aß deposition were identified in at least 30% of all investigated mice. There was a significant correlation between AIs of Aß PET and TSPO PET in 4 investigated Aß mouse models (APP/PS1: R = 0.593, P = 0.001; PS2APP: R = 0.485, P = 0.019; APP-SL70: R = 0.410, P = 0.037; AppNL-G-F : R = 0.385, P = 0.002). Asymmetry was associated with higher variance of tracer uptake in single hemispheres, leading to higher required sample sizes. Conclusion: Asymmetry of fibrillar plaque neuropathology occurs frequently in Aß mouse models and acts as a potential confounder in experimental designs. Concomitant asymmetry of microglial activation indicates a neuroinflammatory component to hemispheric predominance of fibrillary amyloidosis.


Asunto(s)
Péptidos beta-Amiloides/química , Placa Amiloide/metabolismo , Agregado de Proteínas , Animales , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Placa Amiloide/diagnóstico por imagen , Tomografía de Emisión de Positrones
17.
EMBO Mol Med ; 12(4): e11227, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32154671

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for the transition of homeostatic microglia to a disease-associated microglial state. To enhance TREM2 activity, we sought to selectively increase the full-length protein on the cell surface via reducing its proteolytic shedding by A Disintegrin And Metalloproteinase (i.e., α-secretase) 10/17. We screened a panel of monoclonal antibodies against TREM2, with the aim to selectively compete for α-secretase-mediated shedding. Monoclonal antibody 4D9, which has a stalk region epitope close to the cleavage site, demonstrated dual mechanisms of action by stabilizing TREM2 on the cell surface and reducing its shedding, and concomitantly activating phospho-SYK signaling. 4D9 stimulated survival of macrophages and increased microglial uptake of myelin debris and amyloid ß-peptide in vitro. In vivo target engagement was demonstrated in cerebrospinal fluid, where nearly all soluble TREM2 was 4D9-bound. Moreover, in a mouse model for Alzheimer's disease-related pathology, 4D9 reduced amyloidogenesis, enhanced microglial TREM2 expression, and reduced a homeostatic marker, suggesting a protective function by driving microglia toward a disease-associated state.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Glicoproteínas de Membrana/inmunología , Microglía , Mieloma Múltiple , Receptores Inmunológicos/inmunología , Péptidos beta-Amiloides , Animales , Línea Celular Tumoral , Femenino , Macrófagos , Ratones , Microglía/patología , Ratas , Ratas Wistar
18.
EMBO Mol Med ; 11(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31122931

RESUMEN

Microglia adopt numerous fates with homeostatic microglia (HM) and a microglial neurodegenerative phenotype (MGnD) representing two opposite ends. A number of variants in genes selectively expressed in microglia are associated with an increased risk for neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Among these genes are progranulin (GRN) and the triggering receptor expressed on myeloid cells 2 (TREM2). Both cause neurodegeneration by mechanisms involving loss of function. We have now isolated microglia from Grn-/- mice and compared their transcriptomes to those of Trem2-/-mice Surprisingly, while loss of Trem2 enhances the expression of genes associated with a homeostatic state, microglia derived from Grn-/- mice showed a reciprocal activation of the MGnD molecular signature and suppression of gene characteristic for HM The opposite mRNA expression profiles are associated with divergent functional phenotypes. Although loss of TREM2 and progranulin resulted in opposite activation states and functional phenotypes of microglia, FDG (fluoro-2-deoxy-d-glucose)-µPET of brain revealed reduced glucose metabolism in both conditions, suggesting that opposite microglial phenotypes result in similar wide spread brain dysfunction.


Asunto(s)
Cerebelo , Glucosa/metabolismo , Glicoproteínas de Membrana/deficiencia , Microglía/metabolismo , Tomografía de Emisión de Positrones , Progranulinas/deficiencia , Receptores Inmunológicos/deficiencia , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Ratones , Ratones Noqueados
19.
Nat Neurosci ; 22(2): 191-204, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30617257

RESUMEN

Coding variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are associated with late-onset Alzheimer's disease (AD). We demonstrate that amyloid plaque seeding is increased in the absence of functional Trem2. Increased seeding is accompanied by decreased microglial clustering around newly seeded plaques and reduced plaque-associated apolipoprotein E (ApoE). Reduced ApoE deposition in plaques is also observed in brains of AD patients carrying TREM2 coding variants. Proteomic analyses and microglia depletion experiments revealed microglia as one origin of plaque-associated ApoE. Longitudinal amyloid small animal positron emission tomography demonstrates accelerated amyloidogenesis in Trem2 loss-of-function mutants at early stages, which progressed at a lower rate with aging. These findings suggest that in the absence of functional Trem2, early amyloidogenesis is accelerated due to reduced phagocytic clearance of amyloid seeds despite reduced plaque-associated ApoE.


Asunto(s)
Enfermedad de Alzheimer/genética , Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/patología , Glicoproteínas de Membrana/genética , Placa Amiloide/genética , Receptores Inmunológicos/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Genotipo , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Fagocitosis/fisiología , Placa Amiloide/metabolismo , Placa Amiloide/patología , Receptores Inmunológicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA