Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 189: 106683, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736415

RESUMEN

In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood. Here, we demonstrate that two multi-target natural products, cannabidiol (CBD) and cannabigerol (CBG), suppress HRPC development in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model by reprogramming metabolic and oncogenic signaling. Mechanistically, CBD increases glycolytic capacity and inhibits oxidative phosphorylation in enzalutamide-resistant HRPC cells. This action of CBD originates from its effect on metabolic plasticity via modulation of VDAC1 and hexokinase II (HKII) coupling on the outer mitochondrial membrane, which leads to strong shifts of mitochondrial functions and oncogenic signaling pathways. The effect of CBG on enzalutamide-resistant HRPC cells was less pronounced than CBD and only partially attributable to its action on mitochondria. However, when optimally combined, these two cannabinoids exhibited strong anti-tumor effects in TRAMP mice, even when these had become refractory to enzalutamide, thus pointing to their therapeutical potential against PCa.


Asunto(s)
Cannabidiol , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Cannabidiol/farmacología , Muerte Celular , Mitocondrias/metabolismo , Neoplasias de la Próstata/metabolismo , Fosforilación Oxidativa , Carcinogénesis/metabolismo , Hormonas/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
2.
Mar Drugs ; 21(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36976237

RESUMEN

Fishes are an important component of human nutrition, mainly acting as source of essential fatty acids in the prevention of cardiovascular disorders. The increase in their consumption has led to a growth of fishes waste; therefore, the disposal and recycling of waste has become a key issue to address, in accordance with circular economy principles. The Moroccan Hypophthalmichthys molitrix and Cyprinus carpio fishes, living in freshwater and marine environments, were collected at mature and immature stages. The fatty acid (FA) profiles of liver and ovary tissues were investigated by GC-MS and compared with edible fillet tissues. The gonadosomatic index, the hypocholesterolemic/hypercholesterolemic ratio, and the atherogenicity and thrombogenicity indexes were measured. Polyunsaturated fatty acids were found to be abundant in the mature ovary and fillet of both species, with a polyunsaturated fatty acids/saturated fatty acids ratio ranging from 0.40 to 1.06 and a monounsaturated fatty acids/polyunsaturated fatty acids ratio between 0.64 and 1.84. Saturated fatty acids were found to be highly abundant in the liver and gonads of both species (range 30-54%), as well as monounsaturated fatty acids (range 35-58%). The results suggested that the exploitation of fish wastes, such as the liver and ovary, may represent a sustainable strategy for the achievement of high value-added molecules with nutraceutical potential.


Asunto(s)
Carpas , Ácidos Grasos , Humanos , Animales , Femenino , Peces , Ácidos Grasos Insaturados , Gónadas , Hígado , Ácidos Grasos Monoinsaturados
3.
Mar Drugs ; 20(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36547890

RESUMEN

Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.


Asunto(s)
Algas Marinas , Ulva , Agua de Mar/química , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos
4.
Proc Natl Acad Sci U S A ; 115(2): 391-396, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279371

RESUMEN

Ammonia is a potent neurotoxin that is detoxified mainly by the urea cycle in the liver. Hyperammonemia is a common complication of a wide variety of both inherited and acquired liver diseases. If not treated early and thoroughly, it results in encephalopathy and death. Here, we found that hepatic autophagy is critically involved in systemic ammonia homeostasis by providing key urea-cycle intermediates and ATP. Hepatic autophagy is triggered in vivo by hyperammonemia through an α-ketoglutarate-dependent inhibition of the mammalian target of rapamycin complex 1, and deficiency of autophagy impairs ammonia detoxification. In contrast, autophagy enhancement by means of hepatic gene transfer of the master regulator of autophagy transcription factor EB or treatments with the autophagy enhancers rapamycin and Tat-Beclin-1 increased ureagenesis and protected against hyperammonemia in a variety of acute and chronic hyperammonemia animal models, including acute liver failure and ornithine transcarbamylase deficiency, the most frequent urea-cycle disorder. In conclusion, hepatic autophagy is an important mechanism for ammonia detoxification because of its support of urea synthesis, and its enhancement has potential for therapy of both primary and secondary causes of hyperammonemia.


Asunto(s)
Autofagia , Hiperamonemia/metabolismo , Hígado/metabolismo , Urea/metabolismo , Amoníaco/metabolismo , Animales , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
5.
Sensors (Basel) ; 21(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502603

RESUMEN

BACKGROUND: The standard test that identifies the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is based on reverse transcriptase-polymerase chain reaction (RT-PCR) from nasopharyngeal (NP) swab specimens. We compared the accuracy of a rapid antigen detection test using exhaled breath condensate by a modified Inflammacheck® device with the standard RT-PCR to diagnose SARS-CoV-2 infection. METHODS: We performed a manufacturer-independent, cross-sectional, diagnostic accuracy study involving two Italian hospitals. Sensitivity, specificity, positive (PLR) and negative likelihood ratio (NLR), positive (PPV) and negative predictive value (NPV) and diagnostic accuracy with 95% confidence intervals (95% CI) of Inflammacheck® were calculated using the RT-PCR results as the standard. Further RT-PCR tests were conducted on NP specimens from test positive subjects to obtain the Ct (cycle threshold) values as indicative evidence of the viral load. RESULTS: A total of 105 individuals (41 females, 39.0%; 64 males, 61.0%; mean age: 58.4 years) were included in the final analysis, with the RT-PCR being positive in 13 (12.4%) and negative in 92 (87.6%). The agreement between the two methods was 98.1%, with a Cohen's κ score of 0.91 (95% CI: 0.79-1.00). The overall sensitivity and specificity of the Inflammacheck® were 92.3% (95% CI: 64.0%-99.8%) and 98.9% (95% CI: 94.1%-100%), respectively, with a PLR of 84.9 (95% CI: 12.0-600.3) and a NLR of 0.08 (95% CI: 0.01-0.51). Considering a 12.4% disease prevalence in the study cohort, the PPV was 92.3% (95% CI: 62.9%-98.8%) and the NPV was 98.9% (95% CI: 93.3%-99.8%), with an overall accuracy of 98.1% (95% CI: 93.3%-99.8%). The Fagan's nomogram substantially confirmed the clinical applicability of the test in a realistic scenario with a pre-test probability set at 4%. Ct values obtained for the positive test subjects by means of the RT-PCR were normally distributed between 26 and 38 cycles, corresponding to viral loads from light (38 cycles) to high (26 cycles). The single false negative record had a Ct value of 33, which was close to the mean of the cohort (32.5 cycles). CONCLUSIONS: The modified Inflammacheck® device may be a rapid, non-demanding and cost-effective method for SARS-CoV-2 detection. This device may be used for routine practice in different healthcare settings (community, hospital, rehabilitation).


Asunto(s)
COVID-19 , SARS-CoV-2 , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad
6.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202684

RESUMEN

Nuclear-magnetic-resonance (NMR) profiling of exhaled breath condensate (EBC) provides insights into the pathophysiology of bronchiectasis by identifying specific biomarkers. We evaluated whether NMR-based metabolomics discriminates the EBC-derived metabolic phenotypes ("metabotypes") of 41 patients with non-cystic fibrosis (nCF) bronchiectasis of various etiology [24 subjects with Primary Ciliary Dyskinesia (PCD); 17 patients with bronchiectasis not associated with PCD (nCF/nPCD)], who were compared to 17 healthy subjects (HS). NMR was used for EBC profiling, and Orthogonal Projections to Latent Structures with partial least-squares discriminant analysis (OPLS-DA) was used as a classifier. The results were validated by using the EBC from 17 PCD patients not included in the primary analysis. Different statistical models were built, which compared nCF/nPCD and HS, PCD and HS, all classes (nCF/nPCD-PCD-HS), and, finally, PCD and nCF/nPCD. In the PCD-nCF/nPCD model, four statistically significant metabolites were able to discriminate between the two groups, with only a minor reduction of the quality parameters. In particular, for nCF/nPCD, acetone/acetoin and methanol increased by 21% and 18%, respectively. In PCD patients, ethanol and lactate increased by 25% and 28%, respectively. They are all related to lung inflammation as methanol is found in the exhaled breath of lung cancer patients, acetone/acetoin produce toxic ROS that damage lung tissue in CF, and lactate is observed in acute inflammation. Interestingly, a high concentration of ethanol hampers cilia beating and can be associated with the genetic defect of PCD. Model validation with 17 PCD samples not included in the primary analysis correctly predicted all samples. Our results indicate that NMR of EBC discriminates nCF/nPCD and PCD bronchiectasis patients from HS, and patients with nCF/nPCD from those with PCD. The metabolites responsible for between-group separation identified specific metabotypes, which characterize bronchiectasis of a different etiology.


Asunto(s)
Bronquiectasia/metabolismo , Espiración , Resonancia Magnética Nuclear Biomolecular , Adolescente , Adulto , Biomarcadores/metabolismo , Pruebas Respiratorias , Niño , Estudios Transversales , Fibrosis Quística/metabolismo , Femenino , Humanos , Masculino , Proyectos Piloto , Estudios Prospectivos
7.
Int J Mol Sci ; 21(21)2020 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-33171588

RESUMEN

Helicobacter pylori (Hp) is a Gram-negative bacterium colonizing the human stomach. Nuclear Magnetic Resonance (NMR) analysis of intracellular human gastric carcinoma cells (MKN-28) incubated with the Hp cell filtrate (Hpcf) displays high levels of amino acids, including the branched chain amino acids (BCAA) isoleucine, leucine, and valine. Polymerase chain reaction (PCR) Array Technology shows upregulation of mammalian Target Of Rapamycin Complex 1 (mTORC1), inflammation, and mitochondrial dysfunction. The review of literature indicates that these traits are common to type 2 diabetes, obesity, Alzheimer's diseases, and cardiometabolic disease. Here, we demonstrate how Hp may modulate these traits. Hp induces high levels of amino acids, which, in turn, activate mTORC1, which is the complex regulating the metabolism of the host. A high level of BCAA and upregulation of mTORC1 are, thus, directly regulated by Hp. Furthermore, Hp modulates inflammation, which is functional to the persistence of chronic infection and the asymptomatic state of the host. Finally, in order to induce autophagy and sustain bacterial colonization of gastric mucosa, the Hp toxin VacA localizes within mitochondria, causing fragmentation of these organelles, depletion of ATP, and oxidative stress. In conclusion, our in vitro disease model replicates the main traits common to the above four diseases and shows how Hp may potentially manipulate them.


Asunto(s)
Enfermedad de Alzheimer/etiología , Diabetes Mellitus Tipo 2/etiología , Helicobacter pylori/patogenicidad , Síndrome Metabólico/etiología , Obesidad/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/microbiología , Aminoácidos/metabolismo , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Infecciones por Helicobacter/complicaciones , Humanos , Técnicas In Vitro , Inflamación/etiología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Metabolómica , Modelos Biológicos , Obesidad/metabolismo , Obesidad/microbiología , Estrés Oxidativo
8.
Metabolomics ; 15(8): 105, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31325058

RESUMEN

INTRODUCTION: In fruits and vegetables, comparative analysis of metabolic plant profiles has a high potential for quality control of active components. Onion (Allium cepa L.) is used fresh or stored as food, spice, and in traditional medicine. Its metabolic content, often with nutraceutical value, makes its level an important factor in agronomic production. OBJECTIVE: To describe for the first time the metabolome of "San Pietro" white onion (WP), and compare its chemical profile with the red onion var. Tropea (RT) and the yellow onion var. Montoro (CM). Furthermore, we also aim to obtain a multivariate model based on NMR fingerprints to discriminate the three Italian A. cepa L. cultivars. METHODS: For the chemical fingerprinting we used NMR-based metabolomics. We investigated the aqueous and chloroform extracts of fresh onion at harvesting time, and after 9-month storage. Principal component analysis (PCA), Partial least squares discriminant analysis (PLS-DA) and Orthogonal partial least squares (OPLS-DA) were used to build reliable models. RESULTS: We obtained a clear discrimination of A. cepa L. varieties for the fresh and stored batches. The statistical model highlighted higher levels of fructo-oligosaccharides (FOS) in the fresh WP; RT showed a high content of glucose, citrate and amino acids, while CM had many sulfur components. In the stored samples (CMS, RTS), carbohydrates and sulfur components decreased, while in WPS the free monosaccharides concentration increased. Linoleic acid was overexpressed in the apolar extracts of CMF and WPF cultivars. CONCLUSION: Metabolomics allows a reliable differentiation among onion varieties, and highlights the potential of fingerprinting for food authentication purposes.


Asunto(s)
Metabolómica , Cebollas/metabolismo , Raíces de Plantas/metabolismo , Análisis Discriminante , Italia , Espectroscopía de Resonancia Magnética , Cebollas/química , Raíces de Plantas/química
10.
J Allergy Clin Immunol ; 139(5): 1536-1547.e5, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27746236

RESUMEN

BACKGROUND: Epidemiologic and clinical evidence supports the existence of an obesity-related asthma phenotype. No distinct pathophysiologic elements or specific biomarkers have been identified thus far, but increased oxidative stress has been reported. OBJECTIVE: We aimed at verifying whether metabolomics of exhaled breath condensate from obese asthmatic (OA) patients, lean asthmatic (LA) patients, and obese nonasthmatic (ONA) subjects could recognize specific and statistically validated biomarkers for a separate "asthma-obesity" respiratory metabolic phenotype, here defined as "metabotype." METHODS: Twenty-five OA patients, 30 ONA subjects, and 30 mild-to-moderate LA age-matched patients participated in a cross-sectional study. Nuclear magnetic resonance (NMR) profiles were analyzed by using partial least-squares discriminant analysis, and the results were validated with an independent patient set. RESULTS: From NMR profiles, we obtained strong regression models that distinguished OA patients from ONA subjects (quality parameters: goodness-of-fit parameter [R2] = 0.81 and goodness-of-prediction parameter [Q2] = 0.79), as well as OA patients from LA patients (R2 = 0.91 and Q2 = 0.89). The all-classes comparison (R2 = 0.86 and Q2 = 0.83) indicated that OA patients possess a respiratory metabolic profile fully divergent from those obtained in the other patient groups. We also identified specific biomarkers for between-class separation, which are independent from clinical bias. They are involved in the methane, pyruvate, and glyoxylate and dicarboxylate metabolic pathways. CONCLUSIONS: NMR-based metabolomics indicates that OA patients are characterized by a respiratory metabolic fingerprint fully different from that of patients independently affected by asthma or obesity. Such a phenotypic difference strongly suggests unique pathophysiologic pathways involved in the pathogenesis of asthma in adult obese subjects. Furthermore, the OA metabotype could define a strategy for patient stratification based on unbiased biomarkers, with important diagnostic and therapeutic implications.


Asunto(s)
Asma/metabolismo , Obesidad/metabolismo , Adulto , Biomarcadores/metabolismo , Pruebas Respiratorias , Estudios Transversales , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Fenotipo , Espectroscopía de Protones por Resonancia Magnética
11.
J Hepatol ; 62(6): 1382-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25595882

RESUMEN

BACKGROUND & AIMS: Obesity and associated metabolic syndrome have quickly become a pandemic and a major detriment to global human health. The presence of non-alcoholic fatty liver disease (NAFLD; hepatosteatosis) in obesity has been linked to the worsening of the metabolic syndrome, including the development of insulin resistance and cardiovascular disease. Currently, there are few options to treat NAFLD, including life style changes and insulin sensitizers. Recent evidence suggests that the cannabinoids Δ(9)-tetrahydrocannabivarin (THCV) and cannabidiol (CBD) improve insulin sensitivity; we aimed at studying their effects on lipid levels. METHODS: The effects of THCV and CBD on lipid levels were examined in a variety of in vitro and in vivo systems, with special emphasis on models of hepatosteatosis. Transcriptional, post-translational and metabolomic changes were assayed. RESULTS: THCV and CBD directly reduce accumulated lipid levels in vitro in a hepatosteatosis model and adipocytes. Nuclear magnetic resonance- (NMR) based metabolomics confirmed these results and further identified specific metabolic changes in THCV and CBD-treated hepatocytes. Treatment also induced post-translational changes in a variety of proteins such as CREB, PRAS40, AMPKa2 and several STATs indicating increased lipid metabolism and, possibly, mitochondrial activity. These results are supported by in vivo data from zebrafish and obese mice indicating that these cannabinoids are able to increase yolk lipid mobilization and inhibit the development of hepatosteatosis respectively. CONCLUSIONS: Our results suggest that THCV and CBD might be used as new therapeutic agents for the pharmacological treatment of obesity- and metabolic syndrome-related NAFLD/hepatosteatosis.


Asunto(s)
Cannabinoides/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Cannabidiol/farmacología , Línea Celular , Dronabinol/análogos & derivados , Dronabinol/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Obesos , Ácido Oléico/administración & dosificación , Receptor Cannabinoide CB1/metabolismo , Canales Catiónicos TRPV/metabolismo , Triglicéridos/metabolismo , Pez Cebra
12.
J Proteome Res ; 13(12): 6107-20, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25393672

RESUMEN

Exhaled breath condensate (EBC) collection is a noninvasive method to investigate lung diseases. EBC is usually collected with commercial/custom-made condensers, but the optimal condensing temperature is often unknown. As such, the physical and chemical properties of exhaled metabolites should be considered when setting the temperature, therefore requiring validation and standardization of the collecting procedure. EBC is frequently used in nuclear magnetic resonance (NMR)-based metabolomics, which unambiguously recognizes different pulmonary pathological states. Here we applied NMR-based metabolomics to asthmatic and healthy EBC samples collected with two commercial condensers operating at -27.3 and -4.8 °C. Thirty-five mild asthmatic patients and 35 healthy subjects were included in the study, while blind validation was obtained from 20 asthmatic and 20 healthy different subjects not included in the primary analysis. We initially analyzed the samples separately and assessed the within-day, between-day, and technical repeatabilities. Next, samples were interchanged, and, finally, all samples were analyzed together, disregarding the condensing temperature. Partial least-squares discriminant analysis of NMR spectra correctly classified samples, without any influence from the temperature. Input variables were either integral bucket areas (spectral bucketing) or metabolite concentrations (targeted profiling). We always obtained strong regression models (95%), with high average-quality parameters for spectral profiling (R(2) = 0.84 and Q(2) = 0.78) and targeted profiling (R(2) = 0.91 and Q(2) = 0.87). In particular, although targeted profiling clustering is better than spectral profiling, all models reproduced the relative metabolite variations responsible for class differentiation. This warrants that cross comparisons are reliable and that NMR-based metabolomics could attenuate some specific problems linked to standardization of EBC collection.


Asunto(s)
Asma/metabolismo , Espiración , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Adulto , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Análisis Discriminante , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Metaboloma , Reproducibilidad de los Resultados , Temperatura
13.
Biochem Pharmacol ; 226: 116383, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908530

RESUMEN

The short-chain fatty acids (SCFAs) acetate, propionate and butyrate, the major products of intestinal microbial fermentation of dietary fibres, are involved in fine-tuning brain functions via the gut-brain axis. However, the effects of SCFAs in the hypothalamic neuronal network regulating several autonomic-brain functions are still unknown. Using NMR spectroscopy, we detected a reduction in brain acetate concentrations in the hypothalamus of obese leptin knockout ob/ob mice compared to lean wild-type littermates. Therefore, we investigated the effect of acetate on orexin/hypocretin neurons (hereafter referred as OX or OX-A neurons), a subset of hypothalamic neurons regulating energy homeostasis, which we have characterized in previous studies to be over-activated by the lack of leptin and enhancement of endocannabinoid tone in the hypothalamus of ob/ob mice. We found that acetate reduces food-intake in concomitance with a reduction of orexin neuronal activity in ob/ob mice. This was demonstrated by evaluating food-intake behaviour and orexin-A/c-FOS immunoreactivity coupled with patch-clamp recordings in Hcrt-eGFP neurons, quantification of prepro-orexin mRNA, and immunolabeling of GPR-43, the main acetate receptor. Our data provide new insights into the mechanisms of the effects of chronic dietary supplementation with acetate, or complex carbohydrates, on energy intake and body weight, which may be partly mediated by inhibition of orexinergic neuron activity.

14.
Sci Total Environ ; 912: 169190, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38092204

RESUMEN

The bisindolic alkaloid caulerpin (CAU) is a bioactive compound isolated from green algae of the genus Caulerpa that are highly invasive in the Mediterranean Sea. On the other side, the purine alkaloid caffeine (CAF) is one of the most globally consumed psychoactive substances and a widespread anthropogenic water pollutant. Both compounds display a large panel of biological properties and are well known to accumulate in the tissues of aquatic organisms and, in certain circumstances, co-occur in the human diet. On this premise, the present study aimed to investigate possible synergistic interactions between CAU and CAF by using the bivalve Mytilus galloprovincialis as a model organism. Mussels were exposed to CAF via medium while they were fed with food enriched with CAU. After treatments, biochemical analysis confirmed the toxic potential of CAF, with increased AChE activity and lipid peroxidation. Also, histopathological alterations were observed in the gills and digestive tubules. The NMR-based metabolomics analysis detected higher levels of free amino acids under CAF treatments. Conversely, the food administration of CAU did not affect the above toxicological biomarkers. In addition, we did not observe any cumulative effect between CAF and CAU toward increased cellular damage and neurotoxicity. On the other hand, a possible action of CAU in decreasing CAF toxicity could be hypothesized based on our results. This hypothesis is supported by the activity of CAU as an agonist of peroxisome proliferator-activated receptors (PPARs). PPARs mediate xenobiotic detoxification via cytochromes P450, which is involved in CAF metabolism. Overall, the results obtained not only rule out any cumulative adverse effects of CAF and CAU but also encourage further research to evaluate the possible use of CAU, a compound easily obtained through the valorization of biomass from invasive species, as a food additive to improve the clearance of xenobiotics.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Humanos , Alcaloides/toxicidad , Alcaloides/metabolismo , Cafeína/toxicidad , Cafeína/metabolismo , Indoles/metabolismo , Indoles/toxicidad , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
15.
J Proteome Res ; 12(3): 1502-11, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23360153

RESUMEN

Nuclear magnetic resonance (NMR)-based metabolomics separates exhaled breath condensate (EBC) profiles of patients affected by pulmonary disease from those of healthy subjects. Here we show the discriminatory ability of NMR-based metabolomics in separating patients exposed to the same risk factor, namely, smoking habit in smoking-related diseases. Fifty duplicated EBC samples from a cohort of current smokers without chronic obstructive pulmonary disease (COPD, henceforth HS), COPD smokers, and subjects with established pulmonary Langerhans cell histiocytosis (PLCH) were analyzed by means of NMR spectroscopy followed by principal component analysis (PCA) and projection to latent structures discriminant analysis (PLS-DA). Clusterization of EBC spectra was disease-specific. COPD and PLCH samples present a profile different from that of HS, showing acetate increase and 1-methylimidazole reduction. An inverse behavior of 2-propanol and isobutyrate characterized COPD with respect to PLCH (high/low in COPD, low/high in PLCH). Both the 2-component and the 3-component PLS-DA models showed a 96% cross-validated accuracy, presenting R(2) and Q(2) values in the ranges of 0.97-0.87 and 0.91-0.78, respectively, and R(2) = 0.87 and Q(2) = 0.78, indicating that data variation is well explained by each model (R(2)), with a good predictivity (Q(2)). NMR spectra of EBC discriminate COPD and PLCH patients from HS and between them, with well-defined metabolic profiles for each class. The specificity of EBC profiles suggests that disease itself drives metabolic separation overwhelming the "common background" due to smoking habit. EBC-NMR investigation offers a powerful tool for assessing the evolution of airway diseases even in the presence of a strong common factor.


Asunto(s)
Pruebas Respiratorias , Espectroscopía de Resonancia Magnética/métodos , Metabolómica , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fumar , Adulto , Estudios de Cohortes , Femenino , Humanos , Masculino
18.
Sci Rep ; 13(1): 22496, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38110483

RESUMEN

In COVID-19 clinical symptoms can persist even after negativization also in individuals who have had mild or moderate disease. We here investigated the biomarkers that define the post-COVID-19 clinical state analyzing the exhaled breath condensate (EBC) of 38 post COVID-19 patients and 38 sex and age-matched healthy controls via nuclear magnetic resonance (NMR)-based metabolomics. Predicted gene-modulated microRNAs (miRNAs) related to COVID-19 were quantified from EBC of 10 patients and 10 controls. Finally, clinical parameters from all post-COVID-19 patients were correlated with metabolomic data. Post-COVID-19 patients and controls showed different metabolic phenotype ("metabotype"). From the metabolites, by using enrichment analysis we identified miRNAs that resulted up-regulated (hsa-miR146a-5p) and down-regulated (hsa-miR-126-3p and hsa-miR-223-3p) in post-COVID-19. Taken together, our multiomics data indicate that post-COVID-19 patients before rehabilitation are characterized by persistent inflammation, dysregulation of liver, endovascular thrombotic and pulmonary processes, and physical impairment, which should be the primary clinical targets to contrast the post-acute sequelae of COVID-19.


Asunto(s)
COVID-19 , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores , Pulmón/metabolismo , Fenotipo
19.
EMBO Mol Med ; 15(3): e16225, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36594243

RESUMEN

Nothing is known about the potential implication of gut microbiota in skeletal muscle disorders. Here, we provide evidence that fecal microbiota composition along with circulating levels of short-chain fatty acids (SCFAs) and related metabolites are altered in the mdx mouse model of Duchenne muscular dystrophy (DMD) compared with healthy controls. Supplementation with sodium butyrate (NaB) in mdx mice rescued muscle strength and autophagy, and prevented inflammation associated with excessive endocannabinoid signaling at CB1 receptors to the same extent as deflazacort (DFZ), the standard palliative care for DMD. In LPS-stimulated C2C12 myoblasts, NaB reduces inflammation, promotes autophagy, and prevents dysregulation of microRNAs targeting the endocannabinoid CB1 receptor gene, in a manner depending on the activation of GPR109A and PPARγ receptors. In sum, we propose a novel disease-modifying approach in DMD that may have benefits also in other muscular dystrophies.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Ratones , Autofagia , Disbiosis , Endocannabinoides/metabolismo , Inflamación/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Intestinos
20.
Sci Total Environ ; 892: 164476, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37257616

RESUMEN

Bioactive natural products from marine invasive species may dramatically impact native communities, while many synthetic pharmaceutical drugs are released into the marine environment and have long-lasting harmful effects on aquatic life. Sometimes, metabolites from alien species and synthetic compounds share similar mechanisms of action, suggesting comparable ecotoxicological impacts. This applies to the alkaloid caulerpin (CAU) from the green algae Caulerpa cylindracea, highly invasive in the Mediterranean Sea, and to the synthetic lipid-lowering drug fenofibrate (FFB), both acting as agonists of peroxisome proliferator-activated receptors (PPARs). Analogies with FFB, which is widely considered hazardous to the aquatic environment, have led to concerns about the ecotoxicological potential of CAU. The problem has implications for public health as CAU is well known to enter the food web accumulating in fish of commercial importance. Here, we compared the effects of FFB and CAU through biochemical and histopathological analysis on a relevant bioindicator molluscan species, the mussel Mytilus galloprovincialis. Under laboratory conditions, mussels were fed with food enriched with CAU or FFB. After treatment, biochemical markers were analyzed revealing metabolic capacity impairments, cellular damage, and changes in acetylcholinesterase activity in mussels fed with FFB-enriched food. NMR-based metabolomic studies also showed significant alterations in the metabolic profiles of FFB-treated mussels. In addition, dietary administration of FFB produced morphological alterations in the mussels' gills and digestive tubules. Obtained results confirm that FFB is harmful to aquatic life and that its release into the environment should be avoided. Conversely, dietary treatment with CAU did not produce any significant alterations in the mussels. Overall, our results pave the way for the possible valorization of the huge biomass from one of the world's worst invasive species to obtain CAU, a natural product of interest in drug discovery.


Asunto(s)
Mytilus edulis , Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus edulis/metabolismo , Especies Introducidas , Acetilcolinesterasa/metabolismo , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA