RESUMEN
BACKGROUND: Recent advancements in high-throughput genomics and targeted therapies have provided tremendous potential to identify and therapeutically target distinct mutations associated with cancers. However, to date the majority of targeted therapies are used to treat all functional mutations within the same gene, regardless of affected codon or phenotype. RESULTS: In this study, we developed a functional genomic analysis workflow with a unique isogenic cell line panel bearing two distinct hotspot PIK3CA mutations, E545K and H1047R, to accurately identify targetable differences between mutations within the same gene. We performed RNA-seq and ATAC-seq and identified distinct transcriptomic and epigenomic differences associated with each PIK3CA hotspot mutation. We used this data to curate a select CRISPR knock out screen to identify mutation-specific gene pathway vulnerabilities. These data revealed AREG as a E545K-preferential target that was further validated through in vitro analysis and publicly available patient databases. CONCLUSIONS: Using our multi-modal genomics framework, we discover distinct differences in genomic regulation between PIK3CA hotspot mutations, suggesting the PIK3CA mutations have different regulatory effects on the function and downstream signaling of the PI3K complex. Our results demonstrate the potential to rapidly uncover mutation specific molecular targets, specifically AREG and a proximal gene regulatory region, that may provide clinically relevant therapeutic targets. The methods outlined provide investigators with an integrative strategy to identify mutation-specific targets for the treatment of other oncogenic mutations in an isogenic system.
Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase I , Genómica , Mutación , Fosfatidilinositol 3-Quinasa Clase I/genética , Humanos , Neoplasias de la Mama/genética , Genómica/métodos , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión GénicaRESUMEN
BACKGROUND: Patient-reported outcomes (PROs) are a better tool for evaluating the experiences of patients who have symptomatic, treatment-associated adverse events (AEs) compared with clinician-rated AEs. The authors present PROs assessing health-related quality of life (HRQoL) and treatment-related neurotoxicity for adjuvant capecitabine versus platinum on the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network (ECOG-ACRIN) EA1131 trial (ClinicalTrials.gov identifier NCT02445391). METHODS: Participants completed the National Comprehensive Cancer Network Functional Assessment of Cancer Therapy-Breast Cancer Symptom Index (NFBSI-16) and the Functional Assessment of Cancer Therapy-Gynecologic Oncology Group neurotoxicity subscale (platinum arm only) at baseline, cycle 3 day 1 (C3D1), 6 months, and 15 months. Because of early termination, power was insufficient to test the hypothesis that HRQoL, as assessed by the NFBSI-16 treatment side-effect (TSE) subscale, would be better at 6 and 15 months in the capecitabine arm; all analyses were exploratory. Means were compared by using t-tests or the Wilcoxon rank-sum test, and proportions were compared by using the χ2 test. RESULTS: Two hundred ninety-six of 330 eligible patients provided PROs. The mean NFBSI-16 TSE subscale score was lower for the platinum arm at baseline (p = .02; absolute difference, 0.6 points) and for the capecitabine arm at C3D1 (p = .04; absolute difference, 0.5 points), but it did not differ at other times. The mean change in TSE subscale scores differed between the arms from baseline to C3D1 (platinum arm, 0.15; capecitabine arm, -0.72; p = .03), but not from baseline to later time points. The mean decline in Functional Assessment of Cancer Therapy-Gynecologic Oncology Group neurotoxicity subscale scores exceeded the minimal meaningful change (1.38 points) from baseline to each subsequent time point (all p < .05). CONCLUSIONS: Despite the similar frequency of clinician-rated AEs, PROs identified greater on-treatment symptom burden with capecitabine and complemented clinician-rated AEs by characterizing patients' experiences during chemotherapy.
Asunto(s)
Capecitabina , Medición de Resultados Informados por el Paciente , Calidad de Vida , Neoplasias de la Mama Triple Negativas , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Capecitabina/uso terapéutico , Capecitabina/efectos adversos , Quimioterapia Adyuvante/métodos , Neoplasia Residual , Platino (Metal)/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológicoRESUMEN
Previous short-hairpin RNA knockdown studies have established that depletion of human uracil DNA glycosylase (hUNG) sensitizes some cell lines to 5-fluorodeoxyuridine (FdU). Here, we selectively inhibit the catalytic activity of hUNG by lentiviral transduction of uracil DNA glycosylase inhibitor protein into a large panel of cancer cell lines under control of a doxycycline-inducible promoter. This induced inhibition strategy better assesses the therapeutic potential of small-molecule targeting of hUNG. In total, 6 of 11 colorectal lines showed 6- to 70-fold increases in FdU potency upon hUNG inhibition ("responsive"). This hUNG-dependent response was not observed with fluorouracil (FU), indicating that FU does not operate through the same DNA repair mechanism as FdU in vitro. Potency of the thymidylate synthase inhibitor raltitrexed (RTX), which elevates deoxyuridine triphosphate levels, was only incrementally enhanced upon hUNG inhibition (<40%), suggesting that responsiveness is associated with incorporation and persistence of FdU in DNA rather than deoxyuridine. The importance of FU/A and FU/G lesions in the toxicity of FdU is supported by the observation that dT supplementation completely rescued the toxic effects of U/A lesions resulting from RTX, but dT only increased the IC50 for FdU, which forms both FU/A and FU/G mismatches. Contrary to previous reports, cellular responsiveness to hUNG inhibition did not correlate with p53 status or thymine DNA glycosylase expression. A model is suggested in which the persistence of FU/A and FU/G base pairs in the absence of hUNG activity elicits an apoptotic DNA damage response in both responsive and nonresponsive colorectal lines. SIGNIFICANCE STATEMENT: The pyrimidine base 5-fluorouracil is a mainstay chemotherapeutic for treatment of advanced colorectal cancer. Here, this study shows that its deoxynucleoside form, 5-fluorodeoxyuridine (FdU), operates by a distinct DNA incorporation mechanism that is strongly potentiated by inhibition of the DNA repair enzyme human uracil DNA glycosylase. The hUNG-dependent mechanism was present in over 50% of colorectal cell lines tested, suggesting that a significant fraction of human cancers may be sensitized to FdU in the presence of a small-molecule hUNG inhibitor.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/patología , Floxuridina/farmacología , Fluorouracilo/farmacología , Quinazolinas/farmacología , Tiofenos/farmacología , Uracil-ADN Glicosidasa/antagonistas & inhibidores , Línea Celular Tumoral , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Uracil-ADN Glicosidasa/metabolismoRESUMEN
Advances in genomic strategies and the development of targeted therapies have enabled precision medicine to revolutionise the field of oncology. Precision medicine uses patient-specific genetic and molecular information, traditionally obtained from tumour biopsy samples, to classify tumours and treat them accordingly. However, biopsy samples often fail to provide complete tumour profiling, and the technique is expensive and, of course, relatively invasive. Advances in genomic techniques have led to improvements in the isolation and detection of circulating tumour DNA (ctDNA), a component of a peripheral blood draw/liquid biopsy. Liquid biopsy offers a minimally invasive method to gather genetic information that is representative of a global snapshot of both primary and metastatic sites and can thereby provide invaluable information for potential targeted therapies and methods for tumour surveillance. However, a lack of prospective clinical trials showing direct patient benefit has limited the implementation of liquid biopsies in standard clinical applications. Here, we review the potential of ctDNA obtained by liquid biopsy to revolutionise personalised medicine and discuss current applications of ctDNA both at the benchtop and bedside.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , ADN Tumoral Circulante/genética , Neoplasias de la Mama/genética , Femenino , Humanos , Biopsia Líquida , Mutación , Metástasis de la Neoplasia , Medicina de PrecisiónRESUMEN
PURPOSE: Male breast cancer (BC) is rare, representing approximately 1% of cancers that occur in men and approximately 1% of all BCs worldwide. Because male BC is rare, not much is known about the disease, and treatment recommendations are typically extrapolated from data available from clinical trials enrolling female BC patients. METHODS: We review the epidemiology, risk factors, prognosis, and the varied molecular and clinicopathologic features that characterize male BC. In addition, we summarize the available data for the use of systemic therapy in the treatment of male BC and explore the ongoing development of targeted therapeutic agents for the treatment of this subgroup of BCs. RESULTS: There are important biological differences between male and female BC. Male BC is almost exclusively hormone receptor positive (+), including the androgen receptor (AR), and is associated with an increased prevalence of BRCA2 germline mutations, especially in men with increased risk for developing high-risk BC. Additional research is warranted to better characterize male BC. To accomplish this, a multi-national consortium approach, such as the International Male Breast Cancer Program, is needed in response to the scarcity of patients. This approach allows the pooling of information from a large number of men with BC and the creation of registries for future therapeutic-focused clinical trials. CONCLUSIONS: Given the unique biology of BC in men, promising new therapeutic targets are currently under investigation, including the use of poly-ADP-ribose polymerase inhibitors or AR-targeted agents either as monotherapy or in combination with other agents.
Asunto(s)
Neoplasias de la Mama Masculina/epidemiología , Neoplasias de la Mama Masculina/terapia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama Masculina/etiología , Ensayos Clínicos como Asunto , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Programa de VERFRESUMEN
Circulating cell-free DNA (ccfDNA)--first identified in 1947--is "naked" DNA that is free-floating in the blood, and derived from both normal and diseased cells. In the 1970s, scientists observed that patients with cancer had elevated levels of ccfDNA as compared to their healthy, cancer-free counterparts. The maternal fetal medicine community first developed techniques to identify the small fraction of fetal-derived ccfDNA for diagnostic purposes. Similarly, due to the presence of tumor-specific (somatic) variations in all cancers, the fraction of circulating cell-free plasma tumor DNA (ptDNA) in the larger pool of ccfDNA derived from normal cells can serve as extremely specific blood-based biomarkers for a patient's cancer. In theory this "liquid biopsy" can provide a real-time assessment of molecular tumor genotype (qualitative) and existing tumor burden (quantitative). Historically, the major limitation for ptDNA as a biomarker has been related to a low detection rate; however, current and developing techniques have improved sensitivity dramatically. In this chapter, we discuss these methods, including digital polymerase chain reaction and various approaches to tagged next-generation sequencing.
Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , ADN de Neoplasias/sangre , Detección Precoz del Cáncer , Animales , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , ADN de Neoplasias/genética , Detección Precoz del Cáncer/métodos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa , Valor Predictivo de las Pruebas , PronósticoRESUMEN
Background: Recent advancements in high-throughput genomics and targeted therapies have provided tremendous potential to identify and therapeutically target distinct mutations associated with cancers. However, to date the majority of targeted therapies are used to treat all functional mutations within the same gene, regardless of affected codon or phenotype. Results: In this study, we developed a functional genomic analysis workflow with a unique isogenic cell line panel bearing two distinct hotspot PIK3CA mutations, E545K and H1047R, to accurately identify targetable differences between mutations within the same gene. We performed RNA-seq and ATAC-seq and identified distinct transcriptomic and epigenomic differences associated with each PIK3CA hotspot mutation. We used this data to curate a select CRISPR knock out screen to identify mutation-specific gene pathway vulnerabilities. These data revealed AREG as a E545K-preferential target that was further validated through in vitro analysis and publicly available patient databases. Conclusions: Using our multi-modal genomics framework, we discover distinct differences in genomic regulation between PIK3CA hotspot mutations, suggesting the PIK3CA mutations have different regulatory effects on the function and downstream signaling of the PI3K complex. Our results demonstrate the potential to rapidly uncover mutation specific molecular targets, specifically AREG and a proximal gene regulatory region, that may provide clinically relevant therapeutic targets. The methods outlined provide investigators with an integrative strategy to identify mutation-specific targets for the treatment of other oncogenic mutations in an isogenic system.
RESUMEN
PURPOSE: Although immune checkpoint inhibitors (ICIs) have improved outcomes in certain patients with cancer, they can also cause life-threatening immunotoxicities. Predicting immunotoxicity risks alongside response could provide a personalized risk-benefit profile, inform therapeutic decision making, and improve clinical trial cohort selection. We aimed to build a machine learning (ML) framework using routine electronic health record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year overall survival. METHODS: Real-world EHR data of more than 2,200 patients treated with ICI through December 31, 2018, were used to develop predictive models. Using a prediction time point of ICI initiation, a 1-year prediction time window was applied to create binary labels for the four outcomes for each patient. Feature engineering involved aggregating laboratory measurements over appropriate time windows (60-365 days). Patients were randomly partitioned into training (80%) and test (20%) sets. Random forest classifiers were developed using a rigorous model development framework. RESULTS: The patient cohort had a median age of 63 years and was 61.8% male. Patients predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance, with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis, colitis, and 1-year overall survival models, respectively. Each model relies on an outcome-specific feature set, though some features are shared among models. CONCLUSION: To our knowledge, this is the first ML solution that assesses individual ICI risk-benefit profiles based predominantly on routine structured EHR data. As such, use of our ML solution will not require additional data collection or documentation in the clinic.
Asunto(s)
Colitis , Hepatitis , Neumonía , Humanos , Masculino , Persona de Mediana Edad , Femenino , Inhibidores de Puntos de Control Inmunológico , Instituciones de Atención Ambulatoria , Neumonía/inducido químicamente , Neumonía/diagnósticoRESUMEN
Several emerging therapies kill cancer cells primarily by inducing necrosis. As necrosis activates immune cells, potentially, uncovering the molecular drivers of anticancer therapy-induced necrosis could reveal approaches for enhancing immunotherapy efficacy. To identify necrosis-associated genes, we performed a genome-wide CRISPR-Cas9 screen with negative selection against necrosis-inducing preclinical agents BHPI and conducted follow-on experiments with ErSO. The screen identified transient receptor potential melastatin member 4 (TRPM4), a calcium-activated, ATP-inhibited, sodium-selective plasma membrane channel. Cancer cells selected for resistance to BHPI and ErSO exhibited robust TRPM4 downregulation, and TRPM4 reexpression restored sensitivity to ErSO. Notably, TRPM4 knockout (TKO) abolished ErSO-induced regression of breast tumors in mice. Supporting a broad role for TRPM4 in necrosis, knockout of TRPM4 reversed cell death induced by four additional diverse necrosis-inducing cancer therapies. ErSO induced anticipatory unfolded protein response (a-UPR) hyperactivation, long-term necrotic cell death, and release of damage-associated molecular patterns that activated macrophages and increased monocyte migration, all of which was abolished by TKO. Furthermore, loss of TRPM4 suppressed the ErSO-induced increase in cell volume and depletion of ATP. These data suggest that ErSO triggers initial activation of the a-UPR but that it is TRPM4-mediated sodium influx and cell swelling, resulting in osmotic stress, which sustains and propagates lethal a-UPR hyperactivation. Thus, TRPM4 plays a pivotal role in sustaining lethal a-UPR hyperactivation that mediates the anticancer activity of diverse necrosis-inducing therapies. SIGNIFICANCE: A genome-wide CRISPR screen reveals a pivotal role for TRPM4 in cell death and immune activation following treatment with diverse necrosis-inducing anticancer therapies, which could facilitate development of necrosis-based cancer immunotherapies.
Asunto(s)
Adenosina Trifosfato , Canales Catiónicos TRPM , Ratones , Animales , Necrosis/metabolismo , Muerte Celular , Membrana Celular/metabolismo , Adenosina Trifosfato/metabolismo , Sodio/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismoRESUMEN
The AURORA US Metastasis Project was established with the goal to identify molecular features associated with metastasis. We assayed 55 females with metastatic breast cancer (51 primary cancers and 102 metastases) by RNA sequencing, tumor/germline DNA exome and low-pass whole-genome sequencing and global DNA methylation microarrays. Expression subtype changes were observed in ~30% of samples and were coincident with DNA clonality shifts, especially involving HER2. Downregulation of estrogen receptor (ER)-mediated cell-cell adhesion genes through DNA methylation mechanisms was observed in metastases. Microenvironment differences varied according to tumor subtype; the ER+/luminal subtype had lower fibroblast and endothelial content, while triple-negative breast cancer/basal metastases showed a decrease in B and T cells. In 17% of metastases, DNA hypermethylation and/or focal deletions were identified near HLA-A and were associated with reduced expression and lower immune cell infiltrates, especially in brain and liver metastases. These findings could have implications for treating individuals with metastatic breast cancer with immune- and HER2-targeting therapies.
Asunto(s)
Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Femenino , Animales , Humanos , Multiómica , Mama , Neoplasias de la Mama Triple Negativas/genética , Metilación de ADN/genética , Neoplasias Mamarias Animales/genética , Epigénesis Genética/genética , Microambiente Tumoral/genéticaRESUMEN
INTRODUCTION: Although a high frequency of androgen receptor (AR) expression in human breast cancers has been described, exploiting this knowledge for therapy has been challenging. This is in part because androgens can either inhibit or stimulate cell proliferation in pre-clinical models of breast cancer. In addition, many breast cancers co-express other steroid hormone receptors that can affect AR signaling, further obfuscating the effects of androgens on breast cancer cells. METHODS: To create better-defined models of AR signaling in human breast epithelial cells, we took estrogen receptor (ER)-α-negative and progesterone receptor (PR)-negative human breast epithelial cell lines, both cancerous and non-cancerous, and engineered them to express AR, thus allowing the unambiguous study of AR signaling. We cloned a full-length cDNA of human AR, and expressed this transgene in MCF-10A non-tumorigenic human breast epithelial cells and MDA-MB-231 human breast-cancer cells. We characterized the responses to AR ligand binding using various assays, and used isogenic MCF-10A p21 knock-out cell lines expressing AR to demonstrate the requirement for p21 in mediating the proliferative responses to AR signaling in human breast epithelial cells. RESULTS: We found that hyperactivation of the mitogen-activated protein kinase (MAPK) pathway from both AR and epidermal growth factor receptor (EGFR) signaling resulted in a growth-inhibitory response, whereas MAPK signaling from either AR or EGFR activation resulted in cellular proliferation. Additionally, p21 gene knock-out studies confirmed that AR signaling/activation of the MAPK pathway is dependent on p21. CONCLUSIONS: These studies present a new model for the analysis of AR signaling in human breast epithelial cells lacking ERα/PR expression, providing an experimental system without the potential confounding effects of ERα/PR crosstalk. Using this system, we provide a mechanistic explanation for previous observations ascribing a dual role for AR signaling in human breast cancer cells. As previous reports have shown that approximately 40% of breast cancers can lack p21 expression, our data also identify potential new caveats for exploiting AR as a target for breast cancer therapy.
Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Sistema de Señalización de MAP Quinasas , Receptores Androgénicos/fisiología , Antagonistas de Andrógenos/farmacología , Andrógenos/farmacología , Anilidas/farmacología , Neoplasias de la Mama , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Activación Enzimática , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Receptor alfa de Estrógeno/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Expresión Génica , Humanos , Metribolona/farmacología , Nitrilos/farmacología , Receptores Androgénicos/biosíntesis , Receptores Androgénicos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Compuestos de Tosilo/farmacología , Regulación hacia ArribaRESUMEN
The combination of the mTOR inhibitor everolimus with the aromatase inhibitor exemestane was evaluated in the randomized Phase III BOLERO-2 trial. Research has indicated that aberrant signaling through the mTOR pathway is associated with resistance to endocrine therapies. The BOLERO-2 trial examined the effects on progression-free survival of the addition of everolimus to exemestane in a patient population of postmenopausal, hormone receptor-positive, advanced breast cancer. At the interim analysis, the median progression-free survival assessed by local investigators was 6.9 months for everolimus plus exemestane versus 2.8 months for placebo plus exemestane (hazard ratio: 0.43; p < 0.001), and by central assessment was 10.6 versus 4.1 months, respectively (hazard ratio: 0.36; p < 0.001). The everolimus plus exemestane arm showed greater number of grade 3 and 4 adverse events. This study suggests that the addition of everolimus to exemestane is a potential viable treatment option for this patient population.
Asunto(s)
Androstadienos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Sirolimus/análogos & derivados , Adulto , Anciano , Androstadienos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Everolimus , Femenino , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Posmenopausia , Receptor ErbB-2/genética , Receptores de Estrógenos/genética , Sirolimus/administración & dosificación , Sirolimus/uso terapéutico , Resultado del TratamientoRESUMEN
Cancer cells shed naked DNA molecules into the circulation. This circulating tumor DNA (ctDNA) has become the predominant analyte for liquid biopsies to understand the mutational landscape of cancer. Coupled with next-generation sequencing, ctDNA can serve as an alternative substrate to tumor tissues for mutation detection and companion diagnostic purposes. In fact, recent advances in precision medicine have rapidly enabled the use of ctDNA to guide treatment decisions for predicting response and resistance to targeted therapies and immunotherapies. An advantage of using ctDNA over conventional tissue biopsies is the relatively noninvasive approach of obtaining peripheral blood, allowing for simple repeated and serial assessments. Most current clinical practice using ctDNA has endeavored to identify druggable and resistance mutations for guiding systemic therapy decisions, albeit mostly in metastatic disease. However, newer research is evaluating potential for ctDNA as a marker of minimal residual disease in the curative setting and as a useful screening tool to detect cancer in the general population. Here we review the history of ctDNA and liquid biopsies, technologies to detect ctDNA, and some of the current challenges and limitations in using ctDNA as a marker of minimal residual disease and as a general blood-based cancer screening tool. We also discuss the need to develop rigorous clinical studies to prove the clinical utility of ctDNA for future applications in oncology.
Asunto(s)
ADN Tumoral Circulante , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Humanos , Biopsia Líquida , Mutación , Neoplasia Residual , Medicina de PrecisiónRESUMEN
Inherited germline mutations in the breast cancer gene 1 (BRCA1) or BRCA2 genes (herein BRCA1/2) greatly increase the risk of breast and ovarian cancer, presumably by elevating somatic mutational errors as a consequence of deficient DNA repair. However, this has never been directly demonstrated by a comprehensive analysis of the somatic mutational landscape of primary, noncancer, mammary epithelial cells of women diagnosed with pathogenic BRCA1/2 germline mutations. Here, we used an accurate, single-cell whole-genome sequencing approach to first show that telomerized primary mammary epithelial cells heterozygous for a highly penetrant BRCA1 variant displayed a robustly elevated mutation frequency as compared with their isogenic control cells. We then demonstrated a small but statistically significant increase in mutation frequency in mammary epithelial cells isolated from the breast of BRCA1/2 mutation carriers as compared with those obtained from age-matched controls with no genetically increased risk for breast cancer.
Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Células Epiteliales/patología , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Mutación , Neoplasias Ováricas/patología , Análisis de la Célula IndividualRESUMEN
BACKGROUND: Poly-ADP ribose polymerase (PARP) inhibitors (PARPi) are active in patients with germline BRCA1/2 (gBRCA1/2)-mutated breast cancer, accounting for 5% to 10% of all breast cancers. Another 5% to 10% harbor somatic BRCA1/2 (sBRCA1/2) mutations or mutations in non-BRCA1/2, homologous recombination repair (HRR) genes but until recently, there were no data for the use of PARPi in these patients. This study examines the use of olaparib in patients with metastatic breast cancer harboring sBRCA1/2 or germline or somatic non-BRCA1/2, HRR mutations and demonstrates potential activity of PARPi in this setting. METHODS: In this retrospective, single institution study, patients who were treated with off-label, off-protocol olaparib for metastatic breast cancer harboring sBRCA1/2 or germline or somatic non-BRCA1/2, HRR mutations were identified. The primary aim was to describe these patients' demographics, tumor characteristics, mutations, safety and tolerability, response rates, progression free survival, PARPi-associated survival and subsequent treatment. RESULTS: Seven patients were treated off-label, off-trial with olaparib for sBRCA1/2-mutated cancers (n = 4) or non-BRCA1/2, HRR-mutated cancers (n = 3). All patients with sBRCA1/2-mutated cancers responded to PARP inhibition; patients with non-BRCA1/2, HRR-mutated cancers did not respond. The median progression free survival in patients with a sBRCA1/2 mutation was 6.5 months (range 5-9 months) vs. 3 months (range 2-4 months) in patients with non-BRCA1/2, HRR mutations. CONCLUSION: This single institution experience adds to recent larger reports confirming evidence for PARPi therapy in patients with metastatic breast cancer harboring sBRCA1/2 mutations. No activity was observed in patients with either germline or somatic non-BRCA1/2, HRR-mutated cancers.
Asunto(s)
Neoplasias de la Mama , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Daño del ADN , Femenino , Humanos , Mutación , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Estudios RetrospectivosRESUMEN
Most patients with estrogen receptor alpha-positive (ER+) breast cancers initially respond to treatment but eventually develop therapy resistance with disease progression. Overexpression of oncogenic ER coregulators, including proline, glutamic acid, and leucine-rich protein 1 (PELP1), are implicated in breast cancer progression. The lack of small molecules that inhibits PELP1 represents a major knowledge gap. Here, using a yeast-two-hybrid screen, we identified novel peptide inhibitors of PELP1 (PIP). Biochemical assays demonstrated that one of these peptides, PIP1, directly interacted with PELP1 to block PELP1 oncogenic functions. Computational modeling of PIP1 revealed key residues contributing to its activity and facilitated the development of a small-molecule inhibitor of PELP1, SMIP34, and further analyses confirmed that SMIP34 directly bound to PELP1. In breast cancer cells, SMIP34 reduced cell growth in a dose-dependent manner. SMIP34 inhibited proliferation of not only wild-type (WT) but also mutant (MT) ER+ and therapy-resistant breast cancer cells, in part by inducing PELP1 degradation via the proteasome pathway. RNA sequencing analyses showed that SMIP34 treatment altered the expression of genes associated with estrogen response, cell cycle, and apoptosis pathways. In cell line-derived and patient-derived xenografts of both WT and MT ER+ breast cancer models, SMIP34 reduced proliferation and significantly suppressed tumor progression. Collectively, these results demonstrate SMIP34 as a first-in-class inhibitor of oncogenic PELP1 signaling in advanced breast cancer. SIGNIFICANCE: Development of a novel inhibitor of oncogenic PELP1 provides potential therapeutic avenues for treating therapy-resistant, advanced ER+ breast cancer.
Asunto(s)
Neoplasias de la Mama , Proteínas Co-Represoras , Factores de Transcripción , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proteínas Co-Represoras/antagonistas & inhibidores , Proteínas Co-Represoras/metabolismo , Receptor alfa de Estrógeno/genética , Estrógenos , Femenino , Ácido Glutámico , Humanos , Leucina , Prolina , Complejo de la Endopetidasa Proteasomal , Receptores de Estrógenos/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismoRESUMEN
Cribriform prostate cancer, found in both invasive cribriform carcinoma (ICC) and intraductal carcinoma (IDC), is an aggressive histological subtype that is associated with progression to lethal disease. To delineate the molecular and cellular underpinnings of ICC/IDC aggressiveness, this study examines paired ICC/IDC and benign prostate surgical samples by single-cell RNA-sequencing, TCR sequencing, and histology. ICC/IDC cancer cells express genes associated with metastasis and targets with potential for therapeutic intervention. Pathway analyses and ligand/receptor status model cellular interactions among ICC/IDC and the tumor microenvironment (TME) including JAG1/NOTCH. The ICC/IDC TME is hallmarked by increased angiogenesis and immunosuppressive fibroblasts (CTHRC1+ASPN+FAP+ENG+) along with fewer T cells, elevated T cell dysfunction, and increased C1QB+TREM2+APOE+-M2 macrophages. These findings support that cancer cell intrinsic pathways and a complex immunosuppressive TME contribute to the aggressive phenotype of ICC/IDC. These data highlight potential therapeutic opportunities to restore immune signaling in patients with ICC/IDC that may afford better outcomes.
Asunto(s)
Carcinoma Intraductal no Infiltrante , Neoplasias de la Próstata , Apolipoproteínas E , Carcinoma Intraductal no Infiltrante/genética , Proteínas de la Matriz Extracelular , Humanos , Ligandos , Masculino , Clasificación del Tumor , Neoplasias de la Próstata/patología , ARN , Receptores de Antígenos de Linfocitos T , Análisis de la Célula Individual , Microambiente Tumoral/genéticaRESUMEN
Constitutively active estrogen receptor α (ER/ESR1) mutations have been identified in approximately one-third of ER+ metastatic breast cancers. Although these mutations are known as mediators of endocrine resistance, their potential role in promoting metastatic disease has not yet been mechanistically addressed. In this study, we show the presence of ESR1 mutations exclusively in distant but not local recurrences in five independent breast cancer cohorts. In concordance with transcriptomic profiling of ESR1-mutant tumors, genome-edited ESR1 Y537S and D538G-mutant cell models exhibited a reprogrammed cell adhesive gene network via alterations in desmosome/gap junction genes and the TIMP3/MMP axis, which functionally conferred enhanced cell-cell contacts while decreasing cell-extracellular matrix adhesion. In vivo studies showed ESR1-mutant cells were associated with larger multicellular circulating tumor cell (CTC) clusters with increased compactness compared with ESR1 wild-type CTCs. These preclinical findings translated to clinical observations, where CTC clusters were enriched in patients with ESR1-mutated metastatic breast cancer. Conversely, context-dependent migratory phenotypes revealed cotargeting of Wnt and ER as a vulnerability in a D538G cell model. Mechanistically, mutant ESR1 exhibited noncanonical regulation of several metastatic pathways, including secondary transcriptional regulation and de novo FOXA1-driven chromatin remodeling. Collectively, these data provide evidence for ESR1 mutation-modulated metastasis and suggest future therapeutic strategies for targeting ESR1-mutant breast cancer. SIGNIFICANCE: Context- and allele-dependent transcriptome and cistrome reprogramming in mutant ESR1 cell models elicit diverse metastatic phenotypes related to cell adhesion and migration, which can be pharmacologically targeted in metastatic breast cancer.
Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Neoplasias Primarias Secundarias , Células Neoplásicas Circulantes , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Femenino , Humanos , MutaciónRESUMEN
Both epidemiologic and cellular studies in the context of autoimmune diseases have established that protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a key regulator of T cell receptor (TCR) signaling. However, its mechanism of action in tumors and its translatability as a target for cancer immunotherapy have not been established. Here we show that a germline variant of PTPN22, rs2476601, portended a lower likelihood of cancer in patients. PTPN22 expression was also associated with markers of immune regulation in multiple cancer types. In mice, lack of PTPN22 augmented antitumor activity with greater infiltration and activation of macrophages, natural killer (NK) cells, and T cells. Notably, we generated a novel small molecule inhibitor of PTPN22, named L-1, that phenocopied the antitumor effects seen in genotypic PTPN22 knockout. PTPN22 inhibition promoted activation of CD8+ T cells and macrophage subpopulations toward MHC-II expressing M1-like phenotypes, both of which were necessary for successful antitumor efficacy. Increased PD1-PDL1 axis in the setting of PTPN22 inhibition could be further leveraged with PD1 inhibition to augment antitumor effects. Similarly, cancer patients with the rs2476601 variant responded significantly better to checkpoint inhibitor immunotherapy. Our findings suggest that PTPN22 is a druggable systemic target for cancer immunotherapy.
RESUMEN
PURPOSE: Predictive biomarkers to identify patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer who may benefit from targeted therapy alone are required. We hypothesized that early measurements of tumor maximum standardized uptake value corrected for lean body mass (SULmax) on 18F-labeled fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) would predict pathologic complete response (pCR) to pertuzumab and trastuzumab (PT). PATIENTS AND METHODS: Patients with stage II or III, estrogen receptor-negative, HER2-positive breast cancer received four cycles of neoadjuvant PT. 18F-labeled fluorodeoxyglucose positron emission tomography-computed tomography was performed at baseline and 15 days after PT initiation (C1D15). Eighty evaluable patients were required to test the null hypothesis that the area under the curve of percent change in SULmax by C1D15 predicting pCR is ≤ 0.65, with a one-sided type I error rate of 10%. RESULTS: Eighty-eight women were enrolled (83 evaluable), and 85% (75 of 88) completed all four cycles of PT. pCR after PT alone was 22%. Receiver operator characteristic analysis of percent change in SULmax by C1D15 yielded an area under the curve of 0.72 (80% CI, 0.64 to 0.80; one-sided P = .12), which did not reject the null hypothesis. However, between patients who obtained pCR and who did not, a significant difference in median percent reduction in SULmax by C1D15 was observed (63.8% v 41.8%; P = .004) and SULmax reduction ≥ 40% was more prevalent (83% v 52%; P = .03; positive predictive value, 31%). Participants not obtaining a 40% reduction in SULmax by C1D15 were unlikely to obtain pCR (negative predictive value, 91%). CONCLUSION: Although the primary objective was not met, early changes in SULmax predict response to PT in estrogen receptor-negative and HER2-positive breast cancer. Once optimized, this quantitative imaging strategy may facilitate tailoring of therapy in this setting.