Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Plant Physiol ; 171(3): 2112-26, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208305

RESUMEN

A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Transporte de Catión/genética , Tolerancia a la Sal/fisiología , Simportadores/genética , Animales , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cationes/metabolismo , Femenino , Modelos Moleculares , Oocitos , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Simportadores/química , Simportadores/metabolismo , Xenopus laevis
2.
Plant Physiol ; 161(1): 362-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23154535

RESUMEN

Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants constitutively overexpressing AtMYB2 showed increased miR399f expression and tissue Pi contents under high Pi growth and exhibited elevated expression of a subset of Pi starvation-induced genes. Pi starvation-induced root architectural changes were more exaggerated in AtMYB2-overexpressing transgenic plants compared with the wild type. AtMYB2 directly binds to a MYB-binding site in the miR399f promoter in vitro, as well as in vivo, and stimulates miR399f promoter activity in Arabidopsis protoplasts. Transcription of AtMYB2 itself is induced in response to Pi deficiency, and the tissue expression patterns of miR399f and AtMYB2 are similar. Both genes are expressed mainly in vascular tissues of cotyledons and in roots. Our results suggest that AtMYB2 regulates plant responses to Pi starvation by regulating the expression of the miR399 gene.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Fosfatos/metabolismo , Compuestos de Potasio/metabolismo , Transactivadores/metabolismo , Activación Transcripcional , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Cotiledón/genética , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs/genética , Fosfatos/farmacología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Compuestos de Potasio/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Protoplastos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal , Transactivadores/genética
3.
Nucleic Acids Res ; 40(18): 9182-92, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22826500

RESUMEN

Transcriptional repression of pathogen defense-related genes is essential for plant growth and development. Several proteins are known to be involved in the transcriptional regulation of plant defense responses. However, mechanisms by which expression of defense-related genes are regulated by repressor proteins are poorly characterized. Here, we describe the in planta function of CBNAC, a calmodulin-regulated NAC transcriptional repressor in Arabidopsis. A T-DNA insertional mutant (cbnac1) displayed enhanced resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae DC3000 (PstDC3000), whereas resistance was reduced in transgenic CBNAC overexpression lines. The observed changes in disease resistance were correlated with alterations in pathogenesis-related protein 1 (PR1) gene expression. CBNAC bound directly to the PR1 promoter. SNI1 (suppressor of nonexpressor of PR genes1, inducible 1) was identified as a CBNAC-binding protein. Basal resistance to PstDC3000 and derepression of PR1 expression was greater in the cbnac1 sni1 double mutant than in either cbnac1 or sni1 mutants. SNI1 enhanced binding of CBNAC to its cognate PR1 promoter element. CBNAC and SNI1 are hypothesized to work as repressor proteins in the cooperative suppression of plant basal defense.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Resistencia a la Enfermedad/genética , Proteínas Nucleares/metabolismo , Enfermedades de las Plantas/genética , Proteínas Represoras/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Pseudomonas syringae , ARN Mensajero/biosíntesis , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Ácido Salicílico
4.
Plant Physiol ; 158(3): 1463-74, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22238420

RESUMEN

Cellular Na(+)/K(+) ratio is a crucial parameter determining plant salinity stress resistance. We tested the function of plasma membrane Na(+)/K(+) cotransporters in the High-affinity K(+) Transporter (HKT) family from the halophytic Arabidopsis (Arabidopsis thaliana) relative Thellungiella salsuginea. T. salsuginea contains at least two HKT genes. TsHKT1;1 is expressed at very low levels, while the abundant TsHKT1;2 is transcriptionally strongly up-regulated by salt stress. TsHKT-based RNA interference in T. salsuginea resulted in Na(+) sensitivity and K(+) deficiency. The athkt1 mutant lines overexpressing TsHKT1;2 proved less sensitive to Na(+) and showed less K(+) deficiency than lines overexpressing AtHKT1. TsHKT1;2 ectopically expressed in yeast mutants lacking Na(+) or K(+) transporters revealed strong K(+) transporter activity and selectivity for K(+) over Na(+). Altering two amino acid residues in TsHKT1;2 to mimic the AtHKT1 sequence resulted in enhanced sodium uptake and loss of the TsHKT1;2 intrinsic K(+) transporter activity. We consider the maintenance of K(+) uptake through TsHKT1;2 under salt stress an important component supporting the halophytic lifestyle of T. salsuginea.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Brassicaceae/fisiología , Proteínas de Transporte de Catión/metabolismo , Potasio/metabolismo , Cloruro de Sodio/farmacología , Simportadores/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Brassicaceae/efectos de los fármacos , Brassicaceae/genética , Proteínas de Transporte de Catión/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plantas Tolerantes a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/fisiología , Sodio/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Simportadores/genética
5.
Environ Sci Pollut Res Int ; 30(32): 78004-78016, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37303013

RESUMEN

Globally, the number of heavy metal (HM)-polluted sites has increased rapidly in recent years, posing a serious threat to agricultural productivity, human health, and environmental safety. Hence, it is necessary to remediate HM-polluted sites to increase cultivatable lands for agricultural productivity, prevent hazardous effects to human health, and promote environmental safety. Removal of HMs using plants (phytoremediation) is a promising method as it is eco-friendly. Recently, ornamental plants have been widely used in phytoremediation programs as they can simultaneously eliminate HMs and are aesthetically pleasing. Among the ornamental plants, Iris species are frequently used; however, their role in HM remediation has not been reviewed yet. Here, the importance of Iris species in the ornamental industry and their different commercial aspects are briefly described. Additionally, the mechanisms of how the plant species absorb and transport the HMs to the above-ground tissues and tolerate HM stress are highlighted. The variation in HM remediation efficiency depending on the plant species, HM type and concentration, use of certain supplements, and experimental conditions are also discussed. Iris species are able to remove other hazards as well, such as pesticides, pharmaceutical compounds, and industrial wastes, from polluted soils or waste-water. Owing to the valuable information presented in this review, we expect more applications of the species in reclaiming polluted sites and beautifying the environment.


Asunto(s)
Género Iris , Metales Pesados , Contaminantes del Suelo , Humanos , Contaminantes del Suelo/análisis , Plantas , Residuos Industriales , Metales Pesados/análisis , Biodegradación Ambiental , Suelo
6.
Biochim Biophys Acta ; 1810(12): 1317-22, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21756975

RESUMEN

BACKGROUND: The C2 domain is a Ca(2+)/phospholipid-binding motif found in many proteins involved in signal transduction or membrane trafficking. OsERG3 is a homolog of OsERG1, a gene encoding a small C2-domain protein in rice. METHODS: OsERG3 Ca(2+)-binding and phospholipid-binding assays were carried out using (3)H-labeled phospholipid liposomes and a (45)Ca(2+) overlay assay, respectively. Cytosolic expression of OsERG3 was investigated by Western blot analysis and the OsERG3::smGFP transient expression assay. RESULTS: OsERG3 transcript levels were greatly enhanced by treatment with a fungal elicitor and Ca(2+)-ionophore. OsERG3 protein proved unable to interact with phospholipids regardless of the presence or absence of Ca(2+) ions. Nonetheless, OsERG3 displayed calcium-binding activity in an in vitro(45)Ca(2+)-binding assay, a property not observed with OsERG1. The cytosolic location of OsERG3 was not altered by the presence of fungal elicitor or Ca(2+)-ionophore. CONCLUSIONS: OsERG3 encodes a small C2-domain protein consisting of a single C2 domain. OsERG3 binds Ca(2+) ions but not phospholipids. OsERG3 is a cytosolic soluble protein. The OsERG3 gene may play a role in signaling pathway involving Ca(2+) ions. GENERAL SIGNIFICANCE: The data demonstrate that OsERG3 is an unusual small C2-domain protein containing a Ca(2+)-binding module but lacking phospholipid-binding properties.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Oryza/metabolismo , Fosfolípidos/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , ARN Mensajero/genética , Homología de Secuencia de Aminoácido , Transducción de Señal
7.
Artículo en Inglés | MEDLINE | ID: mdl-23228661

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

8.
Biochem Biophys Res Commun ; 422(1): 181-6, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22575450

RESUMEN

Mitogen-activated protein kinases (MPKs) are involved in a number of signaling pathways that control plant development and stress tolerance via the phosphorylation of target molecules. However, so far only a limited number of target molecules have been identified. Here, we provide evidence that MYB41 represents a new target of MPK6. MYB41 interacts with MPK6 not only in vitro but also in planta. MYB41 was phosphorylated by recombinant MPK6 as well as by plant MPK6. Ser(251) in MYB41 was identified as the site phosphorylated by MPK6. The phosphorylation of MYB41 by MPK6 enhanced its DNA binding to the promoter of a LTP gene. Interestingly, transgenic plants over-expressing MYB41(WT) showed enhanced salt tolerance, whereas transgenic plants over-expressing MYB41(S251A) showed decreased salt tolerance during seed germination and initial root growth. These results indicate that the phosphorylation of MYB41 by MPK6 is required for the biological function of MYB41 in salt tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Tolerancia a la Sal , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Serina/genética , Serina/metabolismo , Factores de Transcripción/genética
9.
Biochem Biophys Res Commun ; 423(4): 703-8, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22704933

RESUMEN

The phytohormones abscisic acid (ABA) and gibberellic acid (GA) have antagonistic roles in the control of seed germination and seedling development. We report here that the transcriptional regulator MYB44 has a role in the control of seed germination in Arabidopsis thaliana. High levels of the MYB44 transcript are found in dry seeds but the transcript levels decrease during germination. The decrease in transcript level during germination is inhibited by the GA biosynthesis inhibitor paclobutrazol (PAC). MYB44 is phosphorylated by both recombinant and native forms of MPK3 and MPK6 at Ser(53) and Ser(145). Transgenic overexpression of MYB44 results in increased sensitivity of seed germination to ABA or PAC treatment. The PAC-insensitive germination phenotype of the myb44 mutant is complemented by overexpression of wild type MYB44 but not by overexpression of a mutant protein that lacks the MPK-target serines indicating that phosphorylation of MYB44 by MPKs is required for its biological function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Semillas/metabolismo , Semillas/fisiología , Factores de Transcripción/genética
10.
Plant Cell Environ ; 35(11): 1969-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22554014

RESUMEN

Calmodulin (CaM), a key Ca2+ sensor, regulates diverse cellular processes by modulating the activity of a variety of enzymes and proteins. However, little is known about the biological function of CaM in plant development. In this study, an ASYMMETRIC LEAVES1 (AS1) transcription factor was isolated as a CaM-binding protein. AS1 contains two putative CaM-binding domains (CaMBDs) at the N-terminus. Using domain mapping analysis, both predicted domains were identified as authentic Ca2+ -dependent CaMBDs. We identified three hydrophobic amino acid residues for CaM binding, Trp49 in CaMBDI, and Trp81 and Phe103 in CaMBDII. The interactions of AS1 with CaM were verified in yeast and plant cells. Based on electrophoretic mobility shift assays, CaM inhibited the DNA-binding activity of the AS1/AS2 complex to two cis-regulatory motifs in the KNAT1 promoter. Furthermore, CaM relieved the suppression of KNAT1 transcription by AS1 not only in transient expression assays of protoplasts but also by the overexpression of a CaM-binding negative form of AS1 in as1 mutant plant. Our study suggests that CaM, a calcium sensor, can be involved in the transcriptional control of meristem cell-specific genes by the inhibition of AS1 under the condition of higher levels of Ca2+ in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Proteínas de Unión a Calmodulina/fisiología , Calmodulina/fisiología , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/fisiología , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Mapeo Cromosómico , Escherichia coli/genética , Biblioteca de Genes , Proteínas de Homeodominio/genética , Meristema/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Nicotiana/genética , Factores de Transcripción/química , Factores de Transcripción/genética
11.
Sci Rep ; 12(1): 12114, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840645

RESUMEN

A novel Gram-stain-positive, aerobic bacterial strain, designated AK-R2A1-2 T, was isolated from the surface-sterilized needle leaves of an Abies koreana tree. Strain AK-R2A1-2 T had 97.3% and 96.7% 16S rRNA gene sequence similarities with Subtercola boreus K300T and Subtercola lobariae 9583bT, respectively, but formed a distinct phyletic lineage from these two strains. Growth of strain AK-R2A1-2 T was observed at 4-25 °C at pH 5.0-8.0. Strain AK-R2A1-2 T contained menaquinone 9 (MK-9) and menaquinone 10 (MK-10) as the predominant respiratory quinones. The major cellular fatty acids were anteiso-C15:0 and summed feature 8 (C18:1ω7c or/and C18:1ω6c), and the polar lipids included diphosphatidylglycerol (DPG) and three unknown aminolipids, AKL2, AKL3, and AKL4. The complete genome of strain AK-R2A1-2 T was sequenced to understand the genetic basis of its survival at low temperatures. Multiple copies of cold-associated genes involved in cold-active chaperon, stress response, and DNA repair supported survival of the strain at low temperatures. Strain AK-R2A1-2 T was also able to significantly improve rice seedling growth under low temperatures. Thus, this strain represents a novel species of the genus Subtercola, and the proposed name is Subtercola endophyticus sp. nov. The type strain is AK-R2A1-2 T (= KCTC 49721 T = GDMCC 1.2921 T).


Asunto(s)
Abies , Actinomycetales , Abies/genética , Actinomycetales/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Plant Cell Rep ; 30(8): 1523-31, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21455789

RESUMEN

Arabidopsis MAP kinase phosphatase 1 (AtMKP1) is a member of the mitogen-activated protein kinase (MPK) phosphatase family, which negatively regulates AtMPKs. We have previously shown that AtMKP1 is regulated by calmodulin (CaM). Here, we examined the phosphorylation of AtMKP1 by its substrate AtMPK6. Intriguingly, AtMKP1 was phosphorylated by AtMPK6, one of AtMKP1 substrates. Four phosphorylation sites were identified by phosphoamino acid analysis, TiO(2) chromatography and mass spectrometric analysis. Site-directed mutation of these residues in AtMKP1 abolished the phosphorylation by AtMPK6. In addition, AtMKP1 interacted with AtMPK6 as demonstrated by the yeast two-hybrid system. Finally, the phosphatase activity of AtMKP1 increased approximately twofold following phosphorylation by AtMPK6. By in-gel kinase assays, we showed that AtMKP1 could be rapidly phosphorylated by AtMPK6 in plants. Our results suggest that the catalytic activity of AtMKP1 in plants can be regulated not only by Ca(2+)/CaM, but also by its physiological substrate, AtMPK6.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Tirosina Fosfatasas , Eliminación de Secuencia
13.
PLoS Genet ; 4(2): e1000004, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18454190

RESUMEN

Molybdenum (Mo) is an essential micronutrient for plants, serving as a cofactor for enzymes involved in nitrate assimilation, sulfite detoxification, abscisic acid biosynthesis, and purine degradation. Here we show that natural variation in shoot Mo content across 92 Arabidopsis thaliana accessions is controlled by variation in a mitochondrially localized transporter (Molybdenum Transporter 1 - MOT1) that belongs to the sulfate transporter superfamily. A deletion in the MOT1 promoter is strongly associated with low shoot Mo, occurring in seven of the accessions with the lowest shoot content of Mo. Consistent with the low Mo phenotype, MOT1 expression in low Mo accessions is reduced. Reciprocal grafting experiments demonstrate that the roots of Ler-0 are responsible for the low Mo accumulation in shoot, and GUS localization demonstrates that MOT1 is expressed strongly in the roots. MOT1 contains an N-terminal mitochondrial targeting sequence and expression of MOT1 tagged with GFP in protoplasts and transgenic plants, establishing the mitochondrial localization of this protein. Furthermore, expression of MOT1 specifically enhances Mo accumulation in yeast by 5-fold, consistent with MOT1 functioning as a molybdate transporter. This work provides the first molecular insight into the processes that regulate Mo accumulation in plants and shows that novel loci can be detected by association mapping.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Molibdeno/metabolismo , Alelos , Arabidopsis/clasificación , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Cartilla de ADN/genética , ADN de Plantas/genética , Eliminación de Gen , Genes de Plantas , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Fenotipo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
14.
Plant Physiol ; 151(4): 1930-42, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19837819

RESUMEN

SIZ1 (for yeast SAP and MIZ1) encodes the sole ortholog of mammalian PIAS (for protein inhibitor of activated STAT) and yeast SIZ SUMO (for small ubiquitin-related modifier) E3 ligases in Arabidopsis (Arabidopsis thaliana). Four conserved motifs in SIZ1 include SAP (for scaffold attachment factor A/B/acinus/PIAS domain), PINIT (for proline-isoleucine-asparagine-isoleucine-threonine), SP-RING (for SIZ/PIAS-RING), and SXS (for serine-X-serine, where X is any amino acid) motifs. SIZ1 contains, in addition, a PHD (for plant homeodomain) typical of plant PIAS proteins. We determined phenotypes of siz1-2 knockout mutants transformed with SIZ1 alleles carrying point mutations in the predicted domains. Domain SP-RING is required for SUMO conjugation activity and nuclear localization of SIZ1. Salicylic acid (SA) accumulation and SA-dependent phenotypes of siz1-2, such as diminished plant size, heightened innate immunity, and abscisic acid inhibition of cotyledon greening, as well as SA-independent basal thermotolerance were not complemented by the altered SP-RING allele of SIZ1. The SXS domain also controlled SA accumulation and was involved in greening and expansion of cotyledons of seedlings germinated in the presence of abscisic acid. Mutations of the PHD zinc finger domain and the PINIT motif affected in vivo SUMOylation. Expression of the PHD and/or PINIT domain mutant alleles of SIZ1 in siz1-2 promoted hypocotyl elongation in response to sugar and light. The various domains of SIZ1 make unique contributions to the plant's ability to cope with its environment.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Ligasas/química , Ligasas/metabolismo , Ácido Salicílico/farmacología , Estrés Fisiológico/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/efectos de la radiación , Carbohidratos/farmacología , Cotiledón/efectos de los fármacos , Cotiledón/enzimología , Cotiledón/efectos de la radiación , Prueba de Complementación Genética , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/efectos de la radiación , Hipocótilo/anatomía & histología , Hipocótilo/efectos de los fármacos , Hipocótilo/enzimología , Hipocótilo/efectos de la radiación , Luz , Modelos Biológicos , Mutación/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Estructura Terciaria de Proteína , Estrés Fisiológico/efectos de la radiación , Relación Estructura-Actividad , Temperatura , Transformación Genética/efectos de los fármacos , Transformación Genética/efectos de la radiación
15.
Plant Cell Environ ; 33(11): 1923-34, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20561251

RESUMEN

Sumoylation is a post-translational regulatory process in diverse cellular processes in eukaryotes, involving conjugation/deconjugation of small ubiquitin-like modifier (SUMO) proteins to other proteins thus modifying their function. The PIAS [protein inhibitor of activated signal transducers and activators of transcription (STAT)] and SAP (scaffold attachment factor A/B/acinus/PIAS)/MIZ (SIZ) proteins exhibit SUMO E3-ligase activity that facilitates the conjugation of SUMO proteins to target substrates. Here, we report the isolation and molecular characterization of Oryza sativa SIZ1 (OsSIZ1) and SIZ2 (OsSIZ2), rice homologs of Arabidopsis SIZ1. The rice SIZ proteins are localized to the nucleus and showed sumoylation activities in a tobacco system. Our analysis showed increased amounts of SUMO conjugates associated with environmental stresses such as high and low temperature, NaCl and abscisic acid (ABA) in rice plants. The expression of OsSIZ1 and OsSIZ2 in siz1-2 Arabidopsis plants partially complemented the morphological mutant phenotype and enhanced levels of SUMO conjugates under heat shock conditions. In addition, ABA-hypersensitivity of siz1-2 seed germination was partially suppressed by OsSIZ1 and OsSIZ2. The results suggest that rice SIZ1 and SIZ2 are able to functionally complement Arabidopsis SIZ1 in the SUMO conjugation pathway. Their effects on the Arabidopsis mutant suggest a function for these genes related to stress responses and stress adaptation.


Asunto(s)
Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Calor , Datos de Secuencia Molecular , Oryza/enzimología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Homología de Secuencia de Aminoácido , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Estrés Fisiológico , Sumoilación , Nicotiana/metabolismo , Ubiquitina-Proteína Ligasas/genética
16.
Plant Cell Rep ; 29(11): 1297-304, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20820784

RESUMEN

Plants express many calmodulins (CaMs) and calmodulin-like (CML) proteins that sense and transduce different Ca(2+) signals. Previously, we reported divergent soybean (Glycine max) CaM isoforms (GmCaM4/5) with differential abilities to activate CaM-dependent enzymes. To elucidate biological functions of divergent CaM proteins, we isolated a cDNA encoding a CML protein, AtCML8, from Arabidopsis. AtCML8 shows highest identity with GmCaM4 at the protein sequence level. Expression of AtCML8 was high in roots, leaves, and flowers but low in stems. In addition, the expression of AtCML8 was induced by exposure to salicylic acid or NaCl. AtCML8 showed typical characteristics of CaM such as Ca(2+)-dependent electrophoretic mobility shift and Ca(2+) binding ability. In immunoblot analyses, AtCML8 was recognized only by antiserum against GmCaM4 but not by GmCaM1 antibodies. Interestingly, AtCML8 was able to activate phosphodiesterase (PDE) but did not activate NAD kinase. These results suggest that AtCML8 acts as a CML protein in Arabidopsis with characteristics similar to soybean divergent GmCaM4 at the biochemical levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Calmodulina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calmodulina/genética , ADN Complementario/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ácido Salicílico/farmacología , Análisis de Secuencia de ADN , Cloruro de Sodio/farmacología
17.
Biochem Biophys Res Commun ; 381(3): 424-8, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19222996

RESUMEN

Plant cells often use cell surface receptors to sense environmental changes and then transduce external signals via activated signaling pathways to trigger adaptive responses. In Arabidopsis, the receptor-like protein kinase (RLK) gene family contains more than 600 members, and some of these are induced by pathogen infection, suggesting a possible role in plant defense responses. We previously characterized an S-locus RLK (CBRLK1) at the biochemical level. In this study, we examined the physiological function of CBRLK1 in defense responses. CBRLK1 mutant and CBRLK1-overexpressing transgenic plants showed enhanced and reduced resistance against a virulent bacterial pathogen, respectively. The altered pathogen resistances of the mutant and overexpressing transgenic plants were associated with increased and reduced induction of the pathogenesis-related gene PR1, respectively. These results suggest that CBRLK1 plays a negative role in the disease resistance signaling pathway in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/fisiología , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Mutación , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Ácido Salicílico/farmacología , Transcripción Genética
18.
Nucleic Acids Res ; 35(11): 3612-23, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17485478

RESUMEN

Calmodulin (CaM) is involved in defense responses in plants. In soybean (Glycine max), transcription of calmodulin isoform 4 (GmCaM4) is rapidly induced within 30 min after pathogen stimulation, but regulation of the GmCaM4 gene in response to pathogen is poorly understood. Here, we used the yeast one-hybrid system to isolate two cDNA clones encoding proteins that bind to a 30-nt A/T-rich sequence in the GmCaM4 promoter, a region that contains two repeats of a conserved homeodomain binding site, ATTA. The two proteins, GmZF-HD1 and GmZF-HD2, belong to the zinc finger homeodomain (ZF-HD) transcription factor family. Domain deletion analysis showed that a homeodomain motif can bind to the 30-nt GmCaM4 promoter sequence, whereas the two zinc finger domains cannot. Critically, the formation of super-shifted complexes by an anti-GmZF-HD1 antibody incubated with nuclear extracts from pathogen-treated cells suggests that the interaction between GmZF-HD1 and two homeodomain binding site repeats is regulated by pathogen stimulation. Finally, a transient expression assay with Arabidopsis protoplasts confirmed that GmZF-HD1 can activate the expression of GmCaM4 by specifically interacting with the two repeats. These results suggest that the GmZF-HD1 and -2 proteins function as ZF-HD transcription factors to activate GmCaM4 gene expression in response to pathogen.


Asunto(s)
Calmodulina/genética , Glycine max/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Secuencia de Aminoácidos , Sitios de Unión , ADN Complementario/química , ADN Complementario/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Glycine max/metabolismo , Glycine max/microbiología , Secuencias Repetidas en Tándem , Activación Transcripcional , Dedos de Zinc
19.
J Microbiol ; 57(11): 953-958, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31463785

RESUMEN

A strictly aerobic, motile, endospore-forming, rod-shaped bacterium, designated HS21T, was isolated from rhizospheric soil of the Korean fir tree (Abies koreana) from Halla mountain on Jeju island, Korea. Growth of strain HS21T was observed at pH 6.0-8.0 (optimum: pH 7.0), 0-2% (w/v) NaCl and 4-30°C (optimum: 25°C). A comparative analysis of 16S rRNA gene sequences showed that strain HS21T was most closely related to Cohnella luojiensis HY-22RT (97.6%), followed by C. lupini RLAHU4BT (97.4%) and C. collisoli NKM-5T (97.2%). The genome of strain HS21T comprised a circular chromosome of 7,059,027 bp with 44.8% G + C content. The DNA-DNA relatedness values between strain HS21T and C. luojiensis HY-22RT and C. lupini RLAHU4BT were 18.1% and 13.8%, respectively. The major cellular fatty acids (> 5%) of the isolate were anteiso-C15:0, iso-C16:0, C16:0, and iso-C15:0. The polar lipids present were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol, and three unidentified aminophospholipids. Based on its phenotypic, phylogenetic, genomic, and chemotaxonomic properties, strain HS21T represents a novel species of the genus Cohnella, for which the name Cohnella abietis sp. nov. is proposed. The type strain is HS21T (= KCTC 43028T = CCTCC AB 2019010T).


Asunto(s)
Abies/microbiología , Bacillales/clasificación , Bacillales/aislamiento & purificación , Filogenia , Rizosfera , Microbiología del Suelo , Bacillales/genética , Bacillales/fisiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Lípidos/química , Lisina/química , Fosfatidilgliceroles/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Suelo , Secuenciación Completa del Genoma
20.
Front Plant Sci ; 10: 1146, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708935

RESUMEN

Cell surface receptors perceive signals from the environment and transfer them to the interior of the cell. The Arabidopsis thaliana PR5 receptor-like kinase (AtPR5K) subfamily consists of three members with extracellular domains that share sequence similarity with the PR5 proteins. In this study, we characterized the role of AtPR5K2 in plant drought-stress signaling. AtPR5K2 is predominantly expressed in leaves and localized to the plasma membrane. The atpr5k2-1 mutant showed tolerance to dehydration stress, while AtPR5K2-overexpressing plants was hypersensitive to drought. Bimolecular fluorescence complementation assays showed that AtPR5K2 physically interacted with the type 2C protein phosphatases ABA-insensitive 1 (ABI1) and ABI2 and the SNF1-related protein kinase 2 (SnRK2.6) proteins, all of which are involved in the initiation of abscisic acid (ABA) signaling; however, these interactions were inhibited by treatments of exogenous ABA. Moreover, AtPR5K2 was found to phosphorylate ABI1 and ABI2, but not SnRK2.6. Taken together, these results suggest that AtPR5K2 participates in ABA-dependent drought-stress signaling through the phosphorylation of ABI1 and ABI2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA