Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Chem Rev ; 123(19): 11488-11558, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37748126

RESUMEN

The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.

2.
Nano Lett ; 23(7): 3085-3089, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36780400

RESUMEN

Two-dimensional (2D) semiconducting materials, such as MoS2, are widely studied owing to their great potential in advanced electronic devices. However, MoS2 films grown using chemical vapor deposition (CVD) exhibit lower-than-expected properties owing to numerous defects. Among them, grain boundary (GB) is a critical parameter that determines electrical and mechanical properties of MoS2. Herein, we report the gate-tunable electrostatic friction of GBs in CVD-grown MoS2. Using atomic force microscopy (AFM), we found that electrostatic friction of MoS2 is generated by the Coulomb interaction between tip and carriers of MoS2, which is associated with the local band structure of GBs. Therefore, electrostatic friction is enhanced by localized charge carrier distribution at GB, which is linearly related to the loading force of the tip. Our study shows a strong correlation between electrostatic friction and localized band structure in MoS2 GB, providing a novel method for identifying and characterizing GBs of polycrystalline 2D materials.

3.
Nano Lett ; 22(19): 7892-7901, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36135332

RESUMEN

Herein, we present an unconventional method for multimodal characterization of three-dimensional cardiac organoids. This method can monitor and control the mechanophysiological parameters of organoids within a single device. In this method, local pressure distributions of human-induced pluripotent stem-cell-derived cardiac organoids are visualized spatiotemporally by an active-matrix array of pressure-sensitive transistors. This array is integrated with three-dimensional electrodes formed by the high-resolution printing of liquid metal. These liquid-metal electrodes are inserted inside an organoid to form the intraorganoid interface for simultaneous electrophysiological recording and stimulation. The low mechanical modulus and low impedance of the liquid-metal electrodes are compatible with organoids' soft biological tissue, which enables stable electric pacing at low thresholds. In contrast to conventional electrophysiological methods, this measurement of a cardiac organoid's beating pressures enabled simultaneous treatment of electrical therapeutics using a single device without any interference between the pressure signals and electrical pulses from pacing electrodes, even in wet organoid conditions.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Electrodos , Corazón , Humanos , Metales
4.
Nano Lett ; 20(7): 4872-4881, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32364743

RESUMEN

Here we demonstrate an unconventional fabrication of highly transparent supercapacitors and electrodes using random networks of nanostructured metallic glass nanotroughs for their integrations as wirelessly rechargeable and invisible, skin heat patches. Transparent supercapacitors with fine conductive patterns were printed using an electrohydrodynamic jet-printing. Also, transparent and stretchable electrodes, for wireless antennas, heaters and interconnects, were formed using random network based on nanostructured CuZr nanotroughs and Ag nanowires with superb optoelectronic properties (sheet resistance of 3.0 Ω/sq at transmittance of 91.1%). Their full integrations, as an invisible heat patch on skin, enabled the wireless recharge of supercapacitors and the functions of heaters for thermal therapy of skin tissue. The demonstration of this transparent thermotherapy patch to control the blood perfusion level and hydration rate of skin suggests a promising strategy toward next-generation wearable electronics.


Asunto(s)
Nanoestructuras , Nanocables , Electrodos , Electrónica , Calor
5.
Nano Lett ; 20(1): 66-74, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31639307

RESUMEN

Tactile pressure sensors as flexible bioelectronic devices have been regarded as the key component for recently emerging applications in electronic skins, health-monitoring devices, or human-machine interfaces. However, their narrow range of sensible pressure and their difficulty in forming high integrations represent major limitations for various potential applications. Herein, we report fully integrated, active-matrix arrays of pressure-sensitive MoS2 transistors with mechanoluminescent layers and air dielectrics for wide detectable range from footsteps to cellular motions. The inclusion of mechanoluminescent materials as well as air spaces can increase the sensitivity significantly over entire pressure regimes. In addition, the high integration capability of these active-matrix sensory circuitries can enhance their spatial resolution to the level sufficient to analyze the pressure distribution in a single cardiomyocyte. We envision that these wide-range pressure sensors will provide a new strategy toward next-generation electronics at biomachine interfaces to monitor various mechanical and biological phenomena at single-cell resolution.


Asunto(s)
Molibdeno/química , Transistores Electrónicos , Humanos
6.
Nano Lett ; 20(3): 1517-1525, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31750664

RESUMEN

Intraocular islet transplantation was investigated as a new procedure to treat diabetes. The development of this procedure requires close monitoring of the function of both eye and islet graft. We developed a soft, smart contact lens to monitor the intraocular pressure and applied this for noninvasive monitoring in association with the intraocular islet transplantation in diabetes. A strain sensor inside the lens can detect detailed changes in intraocular pressure by focusing the strain only in the desired, selective area of the contact lens. In addition, this smart contact lens can transmit the real-time value of the intraocular pressure wirelessly using an antenna. The wireless measurement of intraocular pressure that was obtained using this contact lens had a high correlation with the intraocular pressure measured by a rebound tonometer, thereby proving the good accuracy of the contact lens sensor. In the initial period, a slight elevation of intraocular pressure was observed, but the pressure returned to normal in the initial period after the transplantation. This type of monitoring will provide important information on potential changes in the intraocular pressure associated with the transplantation procedure, and it enables appropriate clinical safety steps to be taken, if needed.


Asunto(s)
Cámara Anterior , Lentes de Contacto Hidrofílicos , Presión Intraocular , Trasplante de Islotes Pancreáticos , Animales , Cámara Anterior/fisiopatología , Cámara Anterior/cirugía , Monitoreo Fisiológico , Ratas , Ratas Endogámicas Lew
7.
Sensors (Basel) ; 20(13)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605148

RESUMEN

In recent years, to develop more spontaneous and instant interfaces between a system and users, technology has evolved toward designing efficient and simple gesture recognition (GR) techniques. As a tool for acquiring human motion, a tactile sensor system, which converts the human touch signal into a single datum and executes a command by translating a bundle of data into a text language or triggering a preset sequence as a haptic motion, has been developed. The tactile sensor aims to collect comprehensive data on various motions, from the touch of a fingertip to large body movements. The sensor devices have different characteristics that are important for target applications. Furthermore, devices can be fabricated using various principles, and include piezoelectric, capacitive, piezoresistive, and field-effect transistor types, depending on the parameters to be achieved. Here, we introduce tactile sensors consisting of field-effect transistors (FETs). GR requires a process involving the acquisition of a large amount of data in an array rather than a single sensor, suggesting the importance of fabricating a tactile sensor as an array. In this case, an FET-type pressure sensor can exploit the advantages of active-matrix sensor arrays that allow high-array uniformity, high spatial contrast, and facile integration with electrical circuitry. We envision that tactile sensors based on FETs will be beneficial for GR as well as future applications, and these sensors will provide substantial opportunities for next-generation motion sensing systems.

8.
Nano Lett ; 19(8): 4866-4872, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30983359

RESUMEN

The formation of three-dimensional (3D) interconnections is essential in integrated circuit packaging technology. However, conventional interconnection methods, including the wire-bonding process, were developed for rigid structures of electronic devices, and they are not applicable to the integration of soft and stretchable electronic devices. Hence, there is a strong demand for 3D interconnection technology that is applicable to soft, stretchable electronic devices. Herein, we introduce the material and the processing required for stretchable 3D interconnections on the soft forms of devices and substrates with high resolutions. Liquid-metal-based composites for use as stretchable interconnection materials were developed by uniformly dispersing Pt-decorated carbon nanotubes in a liquid metal matrix. The inclusion of carbon nanotubes in the liquid metal improves the mechanical strength of the composite, thereby overcoming the limitation of the liquid metal that has a low mechanical strength. The composites can be 3D printed with various dimensions: the minimum diameters are about 5 µm and have a breakdown current density comparable to that of metal wires.

9.
Sensors (Basel) ; 19(20)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600870

RESUMEN

The development of wearable electronics has emphasized user-comfort, convenience, security, and improved medical functionality. Several previous research studies transformed various types of sensors into a wearable form to more closely monitor body signals and enable real-time, continuous sensing. In order to realize these wearable sensing platforms, it is essential to integrate wireless power supplies and data communication systems with the wearable sensors. This review article discusses recent progress in wireless technologies and various types of wearable sensors. Also, state-of-the-art research related to the application of wearable sensor systems with wireless functionality is discussed, including electronic skin, smart contact lenses, neural interfaces, and retinal prostheses. Current challenges and prospects of wireless sensor systems are discussed.


Asunto(s)
Dispositivos Electrónicos Vestibles/tendencias , Tecnología Inalámbrica/tendencias , Fenómenos Electrofisiológicos , Humanos , Monitoreo Fisiológico/instrumentación , Interfaz Usuario-Computador
10.
Nano Lett ; 18(6): 3865-3872, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29767987

RESUMEN

Structured metals can sustain a very large scattering cross-section that is induced by localized surface plasmons, which often has an adverse effect on their use as transparent electrodes in displays, touch screens, and smart windows due to an issue of low clarity. Here, we report a broadband optical cloaking strategy for the network of mesoscopic metal wires with submicrometer to micrometer diameters, which is exploited for manufacturing and application of high-clarity metal-wires-based transparent electrodes. We prepare electrospun Ag wires with 300-1800 nm in diameter and perform a facile surface oxidation process to form Ag/Ag2O core/shell heterogeneous structures. The absorptive Ag2O shell, together with the coating of a dielectric cover, leads to the cancellation of electric multipole moments in Ag wires, thereby drastically suppressing plasmon-mediated scattering over the full visible spectrum and rendering Ag wires to be invisible. Simultaneously with the effect of invisibility, the transmittance of Ag/Ag2O wires is significantly improved compared to bare Ag wires, despite the formation of an absorptive Ag2O shell. As an application example, we demonstrate that these invisible Ag wires serve as a high-clarity, high-transmittance, and high-speed defroster for automotive windshields.

11.
Nano Lett ; 16(1): 471-8, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26670378

RESUMEN

Mechanical robustness, electrical and chemical reliabilities of devices against large deformations such as bending and stretching have become the key metrics for rapidly emerging wearable electronics. Metallic glasses (MGs) have high elastic limit, electrical conductivity, and corrosion resistance, which can be promising for applications in wearable electronics. However, their applications in wearable electronics or transparent electrodes have not been extensively explored so far. Here, we demonstrate stretchable and transparent electrodes using CuZr MGs in the form of nanotrough networks. MG nanotroughs are prepared by electrospinning and cosputtering process, and they can be transferred to various desired substrates, including stretchable elastomeric substrates. The resulting MG nanotrough network is first utilized as a stretchable transparent electrode, presenting outstanding optoelectronic (sheet resistance of 3.8 Ω/sq at transmittance of 90%) and mechanical robustness (resistance change less than 30% up to a tensile strain of 70%) as well as excellent chemical stability against hot and humid environments (negligible degradation in performance for 240 h in 85% relative humidity and 85 °C). A stretchable and transparent heater based on the MG nanotrough network is also demonstrated with a wide operating temperature range (up to 180 °C) and excellent stretchability (up to 70% in the strain). The excellent mechanical robustness of these stretchable transparent electrode and heater is ascribed to the structural configuration (i.e., a nanotrough network) and inherent high elastic limit of MGs, as supported by experimental results and numerical analysis. We demonstrate their real-time operations on human skin as a wearable, transparent thermotherapy patch controlled wirelessly using a smartphone as well as a transparent defroster for an automobile side-view mirror, suggesting a promising strategy toward next-generation wearable electronics or automobile applications.

12.
Angew Chem Int Ed Engl ; 56(18): 5007-5011, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28371060

RESUMEN

C-H activation is a versatile tool for appending aryl groups to aromatic systems. However, heavy demands on multiple catalytic cycle operations and site-selectivity have limited its use for graphene segment synthesis. A Pd-catal- yzed one-step synthesis of functionalized triphenylene frameworks is disclosed, which proceeds by 2- or 4-fold C-H arylation of unactivated benzene derivatives. A Pd2 (dibenzylideneacetone)3 catalytic system, using cyclic diaryliodonium salts as π-extending agents, leads to site-selective inter- and intramolecular tandem arylation sequences. Moreover, N-substituted triphenylenes are applied to a field-effect transistor sensor for rapid, sensitive, and reversible alcohol vapor detection.

13.
Small ; 11(19): 2263-8, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25604108

RESUMEN

Electrohydrodynamic inkjet printing of reduced graphene oxide (RGO) is de-monstrated to form complex geometric devices with high resolution (line width ≈ 5 mm). Both planar and highly curved surfaces (radius of curvature ≈ 60 mm) can be used as substrates. Demonstrations of counterfeit coin recognition using RGO patterns and all-printed RGO transistors suggest substantial promise for applications in security and electronics.

14.
Nano Lett ; 14(5): 2647-54, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24742260

RESUMEN

Here we report an unconventional approach for the single-step synthesis of monolithically integrated electronic devices based on multidimensional carbon structures. Integrated arrays of field-effect transistors and sensors composed of carbon nanotube channels and graphitic electrodes and interconnects were formed directly from the synthesis. These fully integrated, all-carbon devices are highly flexible and can be transferred onto both planar and nonplanar substrates, including papers, clothes, and fingernails. Furthermore, the sensor network can be interfaced with inherent life forms in nature for monitoring environmental conditions. Examples of significant applications are the integration of the devices to live plants or insects for real-time, wireless sensing of toxic gases.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente , Grafito/química , Nanotubos de Carbono/química , Animales , Gases/toxicidad , Insectos/fisiología , Plantas
15.
Nano Lett ; 14(11): 6322-8, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25299634

RESUMEN

Transparent electrodes that can maintain their electrical and optical properties stably against large mechanical deformations are essential in numerous applications of flexible and wearable electronics. In this paper, we report a comprehensive analysis of the electrical, optical, and mechanical properties of hybrid nanostructures based on graphene and metal nanotrough networks as stretchable and transparent electrodes. Compared to the single material of graphene or the nanotrough, the formation of this hybrid can improve the uniformity of sheet resistance significantly, that is, a very low sheet resistance (1 Ω/sq) with a standard deviation of less than ±0.1 Ω/sq, high transparency (91% in the visible light regime), and superb stretchability (80% in tensile strain). The successful demonstration of skin-attachable, flexible, and transparent arrays of oxide semiconductor transistors fabricated using hybrid electrodes suggests substantial promise for the next generation of electronic devices.

16.
Nano Lett ; 13(6): 2814-21, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23701320

RESUMEN

Transparent electrodes that can remain electrically conductive and stable under large mechanical deformations are highly desirable for applications in flexible and wearable electronics. This paper describes a comprehensive study of the electrical, optical, and mechanical properties of hybrid nanostructures based on two-dimensional graphene and networks of one-dimensional metal nanowires, and their use as transparent and stretchable electrodes. Low sheet resistance (33 Ω/sq) with high transmittance (94% in visible range), robust stability against electric breakdown and oxidation, and superb flexibility (27% in bending strain) and stretchability (100% in tensile strain) are observed, and these multiple functionalities of the hybrid structures suggest a future promise for next generation electronics. The use of hybrid electrodes to fabricate oxide semiconductor transistors and single-pixel displays integrated on wearable soft contact lenses with in vivo tests are demonstrated.


Asunto(s)
Electrodos , Grafito/química , Metales/química , Nanocables/química , Lentes de Contacto Hidrofílicos , Diseño de Equipo
17.
ACS Nano ; 18(20): 13061-13072, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38721824

RESUMEN

Various strain isolation strategies that combine rigid and stretchable regions for stretchable electronics were recently proposed, but the vulnerability of inorganic materials to mechanical stress has emerged as a major impediment to their performance. We report a strain-isolation system that combines heteropolymers with different elastic moduli (i.e., hybrid stretchable polymers) and utilize it to construct a rugged island-bridge inorganic electronics system. Two types of prepolymers were simultaneously cross-linked to form an interpenetrating polymer network at the rigid-stretchable interface, resulting in a hybrid stretchable polymer that exhibited efficient strain isolation and mechanical stability. The system, including stretchable micro-LEDs and microheaters, demonstrated consistent operation under external strain, suggesting that the rugged island-bridge inorganic electronics mounted on a locally strain-isolated substrate offer a promising solution for replacing conventional stretchable electronics, enabling devices with a variety of form factors.

18.
Sci Adv ; 10(6): eadk7805, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324695

RESUMEN

Glaucoma causes irreversible vision loss due to optic nerve damage and retinal cell degeneration. Since high intraocular pressure (IOP) is a major risk factor for glaucoma development, accurate IOP measurement is crucial, especially intravitreal IOP affecting the optical nerve and cells. However, conventional methods have limits in selectively and directly detecting local retina pressure. Here, we present continuous measurements of local IOP values in the anterior chamber and vitreous chamber of living animals using minimally invasive probes with pressure-sensitive transistors. After inducing glaucoma in animal models, we compared the local IOP distribution between normal and glaucomatous eyes. We also compared IOP values detected in the cornea using tonometry measurements. Our findings revealed that glaucoma induced higher IOP in the vitreous chamber than in the anterior chamber, indicating that measuring IOP in the vitreous chamber is key to the glaucoma model. This progress offers future directions for diagnosis and treatment of glaucoma.


Asunto(s)
Glaucoma , Presión Intraocular , Animales , Glaucoma/diagnóstico , Glaucoma/cirugía , Tonometría Ocular , Cámara Anterior/cirugía , Retina
19.
Adv Mater ; : e2404428, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896876

RESUMEN

Despite of the substantial potential of human-derived retinal organoids, the degeneration of retinal ganglion cells (RGCs) during maturation limits their utility in assessing the functionality of later-born retinal cell subtypes. Additionally, conventional analyses primarily rely on fluorescent emissions, which limits the detection of actual cell functionality while risking damage to the 3D cytoarchitecture of organoids. Here, an electrophysiological analysis is presented to monitor RGC development in early to mid-stage retinal organoids, and compare distinct features with fully-mature mouse retina. This approach utilizes high-resolution 3D printing of liquid-metal microelectrodes, enabling precise targeting of specific inner retinal layers within organoids. The adaptable distribution and softness of these microelectrodes facilitate the spatiotemporal recording of inner retinal signals. This study not only demonstrates the functional properties of RGCs in retinal organoid development but also provides insights into their synaptic connectivity, reminiscent of fetal native retinas. Further comparison with fully-mature mouse retina in vivo verifies the organoid features, highlighting the potential of early-stage retinal organoids in biomedical research.

20.
Nat Commun ; 15(1): 2828, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565532

RESUMEN

Tears have emerged as a promising alternative to blood for diagnosing diabetes. Despite increasing attempts to measure tear glucose using smart contact lenses, the controversy surrounding the correlation between tear glucose and blood glucose still limits the clinical usage of tears. Herein, we present an in-depth investigation of the correlation between tear glucose and blood glucose using a wireless and soft smart contact lens for continuous monitoring of tear glucose. This smart contact lens is capable of quantitatively monitoring the tear glucose levels in basal tears excluding the effect of reflex tears which might weaken the relationship with blood glucose. Furthermore, this smart contact lens can provide an unprecedented level of continuous tear glucose data acquisition at sub-minute intervals. These advantages allow the precise estimation of lag time, enabling the establishment of the concept called 'personalized lag time'. This demonstration considers individual differences and is successfully applied to both non-diabetic and diabetic humans, as well as in animal models, resulting in a high correlation.


Asunto(s)
Lentes de Contacto Hidrofílicos , Diabetes Mellitus , Animales , Humanos , Glucosa/análisis , Glucemia , Lágrimas/química , Diabetes Mellitus/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA