Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cardiovasc Res ; 119(3): 813-825, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36166408

RESUMEN

AIMS: Components of bone morphogenetic protein (BMP) signalling have been implicated in both pathogenesis of pulmonary arterial hypertension (PAH) and endothelial-mesenchymal transition (EndoMT). In particular, the importance of BMP type 2 receptor in these processes has been extensively analysed. However, the contribution of BMP type 1 receptors (BMPR1s) to the onset of PAH and EndoMT remains poorly understood. BMPR1A, one of BMPR1s, was recently implicated in the pathogenesis of PAH, and was found to be down-regulated in the lungs of PAH patients, neither the downstream mechanism nor its contribution to EndoMT has been described. Therefore, we aim to delineate the role of endothelial BMPR1A in modulating EndoMT and pathogenesis of PAH. METHODS AND RESULTS: We find that BMPR1A knockdown in endothelial cells (ECs) induces hallmarks of EndoMT, and deletion of endothelial Bmpr1a in adult mice (Bmpr1aiECKO) leads to development of PAH-like symptoms due to excessive EndoMT. By lineage tracing, we show that endothelial-derived smooth muscle cells are increased in endothelial Bmpr1a-deleted mice. Mechanistically, we identify ZEB1 as a primary target for BMPR1A in this setting; upon BMPR1A activation, ID2 physically interacts and sequesters ZEB1 to attenuate transcription of Tgfbr2, which in turn lowers the responses of ECs towards transforming growth factor beta (TGFß) stimulation and prevents excessive EndoMT. In Bmpr1aiECKO mice, administering endothelial targeting lipid nanoparticles containing siRNA against Tgfbr2 effectively ameliorate PAH, reiterating the importance of BMPR1A-ID2/ZEB1-TGFBR2 axis in modulating progression of EndoMT and pathogenesis of PAH. CONCLUSIONS: We demonstrate that BMPR1A is key to maintain endothelial identity and to prevent excessive EndoMT. We identify BMPR1A-induced interaction between ID2 and ZEB1 is the key regulatory step for onset of EndoMT and pathogenesis of PAH. Our findings indicate that BMPR1A-ID2/ZEB1-TGFBR2 signalling axis could serve as a potential novel therapeutic target for PAH and other EndoMT-related vascular disorders.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Hipertensión Pulmonar , Proteína 2 Inhibidora de la Diferenciación , Hipertensión Arterial Pulmonar , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Animales , Ratones , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Transición Epitelial-Mesenquimal , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
2.
Pulm Circ ; 12(4): e12167, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36532314

RESUMEN

Modulation of endothelial cell behavior and phenotype by hemodynamic forces involves many signaling components, including cell surface receptors, intracellular signaling intermediaries, transcription factors, and epigenetic elements. Many of the signaling mechanisms that underlie mechanotransduction by endothelial cells are inadequately defined. Here we sought to better understand how ß-arrestins, intracellular proteins that regulate agonist-mediated desensitization and integration of signaling by transmembrane receptors, may be involved in the endothelial cell response to shear stress. We performed both in vitro studies with primary endothelial cells subjected to ß-arrestin knockdown, and in vivo studies using mice with endothelial specific deletion of ß-arrestin 1 and ß-arrestin 2. We found that ß-arrestins are localized to primary cilia in endothelial cells, which are present in subpopulations of endothelial cells in relatively low shear states. Recruitment of ß-arrestins to cilia involved its interaction with IFT81, a component of the flagellar transport protein complex in the cilia. ß-arrestin knockdown led to marked reduction in shear stress response, including induction of NOS3 expression. Within the cilia, ß-arrestins were found to associate with the type II bone morphogenetic protein receptor (BMPR-II), whose disruption similarly led to an impaired endothelial shear response. ß-arrestins also regulated Smad transcription factor phosphorylation by BMPR-II. Mice with endothelial specific deletion of ß-arrestin 1 and ß-arrestin 2 were found to have impaired retinal angiogenesis. In conclusion, we have identified a novel role for endothelial ß-arrestins as key transducers of ciliary mechanotransduction that play a central role in shear signaling by BMPR-II and contribute to vascular development.

3.
Sci Transl Med ; 9(407)2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28904225

RESUMEN

Treatment of type 2 diabetes mellitus continues to pose an important clinical challenge, with most existing therapies lacking demonstrable ability to improve cardiovascular outcomes. The atheroprotective peptide apelin (APLN) enhances glucose utilization and improves insulin sensitivity. However, the mechanism of these effects remains poorly defined. We demonstrate that the expression of APLNR (APJ/AGTRL1), the only known receptor for apelin, is predominantly restricted to the endothelial cells (ECs) of multiple adult metabolic organs, including skeletal muscle and adipose tissue. Conditional endothelial-specific deletion of Aplnr (AplnrECKO ) resulted in markedly impaired glucose utilization and abrogation of apelin-induced glucose lowering. Furthermore, we identified inactivation of Forkhead box protein O1 (FOXO1) and inhibition of endothelial expression of fatty acid (FA) binding protein 4 (FABP4) as key downstream signaling targets of apelin/APLNR signaling. Both the Apln-/- and AplnrECKO mice demonstrated increased endothelial FABP4 expression and excess tissue FA accumulation, whereas concurrent endothelial Foxo1 deletion or pharmacologic FABP4 inhibition rescued the excess FA accumulation phenotype of the Apln-/- mice. The impaired glucose utilization in the AplnrECKO mice was associated with excess FA accumulation in the skeletal muscle. Treatment of these mice with an FABP4 inhibitor abrogated these metabolic phenotypes. These findings provide mechanistic insights that could greatly expand the therapeutic repertoire for type 2 diabetes and related metabolic disorders.


Asunto(s)
Receptores de Apelina/metabolismo , Apelina/metabolismo , Endotelio/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Envejecimiento/metabolismo , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteína Forkhead Box O1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones Noqueados , Transducción de Señal
4.
Nat Commun ; 7: 11268, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27068353

RESUMEN

G protein-coupled receptor (GPCR) signalling, including that involving apelin (APLN) and its receptor APLNR, is known to be important in vascular development. How this ligand-receptor pair regulates the downstream signalling cascades in this context remains poorly understood. Here, we show that mice with Apln, Aplnr or endothelial-specific Aplnr deletion develop profound retinal vascular defects, which are at least in part due to dysregulated increase in endothelial CXCR4 expression. Endothelial CXCR4 is negatively regulated by miR-139-5p, whose transcription is in turn induced by laminar flow and APLN/APLNR signalling. Inhibition of miR-139-5p in vivo partially phenocopies the retinal vascular defects of APLN/APLNR deficiency. Pharmacological inhibition of CXCR4 signalling or augmentation of the miR-139-5p-CXCR4 axis can ameliorate the vascular phenotype of APLN/APLNR deficient state. Overall, we identify an important microRNA-mediated GPCR crosstalk, which plays a key role in vascular development.


Asunto(s)
MicroARNs/metabolismo , Receptor Cross-Talk , Receptores CXCR4/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/metabolismo , Adipoquinas/metabolismo , Animales , Apelina , Receptores de Apelina , Atorvastatina/farmacología , Regulación hacia Abajo , Células Endoteliales/metabolismo , Hemorreología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA