Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neuroinflammation ; 21(1): 115, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698374

RESUMEN

BACKGROUND: Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies. METHODS: To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection. RESULTS: NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages. CONCLUSION: In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.


Asunto(s)
Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/virología , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Encefalitis Japonesa/inmunología , Especies Reactivas de Oxígeno/metabolismo , Virus de la Encefalitis Japonesa (Especie) , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/virología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología
2.
Immunology ; 170(1): 83-104, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37278103

RESUMEN

Autosomal recessive (AR) and dominant (AD) deficiencies of TLR3 and TRIF are believed to be crucial genetic causes of herpes simplex encephalitis (HSE), which is a fatal disease causing focal or global cerebral dysfunction following infection with herpes simplex virus type 1 (HSV-1). However, few studies have been conducted on the immunopathological networks of HSE in the context of TLR3 and TRIF defects at the cellular and molecular levels. In this work, we deciphered the crosstalk between type I IFN (IFN-I)-producing epithelial layer and IL-15-producing dendritic cells (DC) to activate NK cells for the protective role of TLR3/TRIF pathway in HSE progression after vaginal HSV-1 infection. TLR3- and TRIF-ablated mice showed enhanced susceptibility to HSE progression, along with high HSV-1 burden in vaginal tract, lymphoid tissues and CNS. The increased HSV-1 burden in TLR3- and TRIF-ablated mice did not correlate with increased infiltration of Ly-6C+ monocytes, but it was closely associated with impaired NK cell activation in vaginal tract. Furthermore, using delicate ex vivo experiments and bone marrow transplantation, TRIF deficiency in tissue-resident cells, such as epithelial cells in vaginal tract, was found to cause impaired NK cell activation by means of low IFN-I production, whereas IFN-I receptor in DC was required for NK cell activation via IL-15 production in response to IFN-I produced from epithelial layer. These results provide new information about IFN-I- and IL-15-mediated crosstalk between epithelial cells and DC at the primary infection site, which suppresses HSE progression in a TLR3- and TRIF-dependent manner.


Asunto(s)
Encefalitis por Herpes Simple , Herpesvirus Humano 1 , Femenino , Animales , Ratones , Encefalitis por Herpes Simple/genética , Receptor Toll-Like 3/genética , Interleucina-15/genética , Células Dendríticas , Proteínas Adaptadoras del Transporte Vesicular/genética
3.
Immunology ; 166(3): 357-379, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35404476

RESUMEN

Asthmatic airway inflammation is divided into two typical endotypes: Th2-mediated eosinophilic and Th1- or Th17-mediated neutrophilic airway inflammation. The miRNA miR-155 has well-documented roles in the regulation of adaptive T-cell responses and innate immunity. However, no specific cell-intrinsic role has yet been elucidated for miR-155 in T cells in the course of Th2-eosinophilic and Th17-neutrophilic airway inflammation using actual in vivo asthma models. Here, using conditional KO (miR155ΔCD4 cKO) mice that have the specific deficiency of miR-155 in T cells, we found that the specific deficiency of miR-155 in T cells resulted in fully suppressed Th2-type eosinophilic airway inflammation following acute allergen exposure, as well as greatly attenuated the Th17-type neutrophilic airway inflammation induced by repeated allergen exposure. Furthermore, miR-155 in T cells appeared to regulate the expression of several different target genes in the functional activation of CD4+ Th2 and Th17 cells. To be more precise, the deficiency of miR-155 in T cells enhanced the expression of c-Maf, SOCS1, Fosl2 and Jarid2 in the course of CD4+ Th2 cell activation, while C/EBPß was highly enhanced in CD4+ Th17 cell activation in the absence of miR-155 expression. Conclusively, our data revealed that miR-155 could promote Th2 and Th17-mediated airway inflammation via the regulation of several different target genes, depending on the context of asthmatic diseases. Therefore, these results provide valuable insights into actual understanding of specific cell-intrinsic role of miR-155 in eosinophilic and neutrophilic airway inflammation for the development of fine-tune therapeutic strategies.


Asunto(s)
Asma , MicroARNs , Factores de Transcripción , Alérgenos , Animales , Asma/inmunología , Modelos Animales de Enfermedad , Inflamación/inmunología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Células Th17 , Células Th2 , Factores de Transcripción/metabolismo
4.
Eur J Immunol ; 50(7): 1000-1018, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32125695

RESUMEN

Dengue infection causes dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). CD4+ Foxp3+ Tregs are expanded in patients during dengue infection, and appear to be associated with clinical severity. However, molecular pathways involved in Treg proliferation and the reason for their insufficient control of severe diseases are poorly understood. Here, dengue infection induced the proliferation of functional CD4+ Foxp3+ Tregs via TLR2/MyD88 pathway. Surface TLR2 on Tregs was responsible for their proliferation, and dengue-expanded Tregs subverted in vivo differentiation of effector CD8+ T cells. An additional interesting finding was that dengue-infected hosts displayed changed levels of susceptibility to other diseases in TLR2-dependent manner. This change included enhanced susceptibility to tumors and bacterial infection, but highly enhanced resistance to viral infection. Further, the transfer of dengue-proliferated Tregs protected the recipients from dengue-induced DHF/DSS and LPS-induced sepsis. In contrast, dengue-infected hosts were more susceptible to sepsis, an effect attributable to early TLR2-dependent production of proinflammatory cytokines. These facts may explain the reason why in some patients, dengue-proliferated Tregs is insufficient to control DF and DHF/DSS. Also, our observations lead to new insights into Treg responses activated by dengue infection in a TLR2-dependent manner, which could differentially act on subsequent exposure to other disease-producing situations.


Asunto(s)
Virus del Dengue/inmunología , Dengue/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Receptor Toll-Like 2/inmunología , Enfermedad Aguda , Animales , Línea Celular Tumoral , Dengue/patología , Ratones , Linfocitos T Reguladores/patología
5.
J Neuroinflammation ; 18(1): 136, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130738

RESUMEN

BACKGROUND: The crucial role of type I interferon (IFN-I, IFN-α/ß) is well known to control central nervous system (CNS) neuroinflammation caused by neurotrophic flaviviruses such as Japanese encephalitis virus (JEV) and West Nile virus. However, an in-depth analysis of IFN-I signal-dependent cellular factors that govern CNS-restricted tropism in JEV infection in vivo remains to be elucidated. METHODS: Viral dissemination, tissue tropism, and cytokine production were examined in IFN-I signal-competent and -incompetent mice after JEV inoculation in tissues distal from the CNS such as the footpad. Bone marrow (BM) chimeric models were used for defining hematopoietic and tissue-resident cells in viral dissemination and tissue tropism. RESULTS: The paradoxical and interesting finding was that IFN-I signaling was essentially required for CNS neuroinflammation following JEV inoculation in distal footpad tissue. IFN-I signal-competent mice died after a prolonged neurological illness, but IFN-I signal-incompetent mice all succumbed without neurological signs. Rather, IFN-I signal-incompetent mice developed hemorrhage-like disease as evidenced by thrombocytopenia, functional injury of the liver and kidney, increased vascular leakage, and excessive cytokine production. This hemorrhage-like disease was closely associated with quick viral dissemination and impaired IFN-I innate responses before invasion of JEV into the CNS. Using bone marrow (BM) chimeric models, we found that intrinsic IFN-I signaling in tissue-resident cells in peripheral organs played a major role in inducing the hemorrhage-like disease because IFN-I signal-incompetent recipients of BM cells from IFN-I signal-competent mice showed enhanced viral dissemination, uncontrolled cytokine production, and increased vascular leakage. IFN-I signal-deficient hepatocytes and enterocytes were permissive to JEV replication with impaired induction of antiviral IFN-stimulated genes, and neuron cells derived from both IFN-I signal-competent and -incompetent mice were vulnerable to JEV replication. Finally, circulating CD11b+Ly-6C+ monocytes infiltrated into the distal tissues inoculated by JEV participated in quick viral dissemination to peripheral organs of IFN-I signal-incompetent mice at an early stage. CONCLUSION: An IFN-I signal-dependent model is proposed to demonstrate how CD11b+Ly-6C+ monocytes are involved in restricting the tissue tropism of JEV to the CNS.


Asunto(s)
Antígeno CD11b/inmunología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Monocitos/inmunología , Monocitos/microbiología , Receptor de Interferón alfa y beta , Animales , Sistema Nervioso Central/microbiología , Sistema Nervioso Central/patología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/microbiología , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/microbiología , Hemorragia/inmunología , Hemorragia/microbiología , Interacciones Huésped-Patógeno , Mediadores de Inflamación/inmunología , Tejido Linfoide/inmunología , Tejido Linfoide/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/inmunología , Tropismo Viral
6.
Cell Immunol ; 351: 104066, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32089258

RESUMEN

Human rhinovirus (hRV) is the most common cause of asthma exacerbation characterized by clinical and pathophysiological heterogeneity. Steroid-sensitive, Th2 type-eosinophilic asthma has been somewhat studied, but hRV-induced neutrophilic asthma exacerbation is poorly understood. Here, CCR5 was found to play a role in attenuating neutrophilic airway inflammation in hRV-induced asthma exacerbation using chicken ovalbumin (OVA)-based model. CCR5 deficiency resulted in exacerbated neutrophilic asthmatic responses in airways following hRV infection. CCR5-deficient mice showed enhanced mucus expression and altered expression of tight junction proteins in lung tissues. CCR5-deficient mice were also manifested with influx of CD45+CD11b+Siglec-F+Gr-1+ neutrophils, along with enhanced production of IL-17A, IFN-γ, IL-6, IL-1ß cytokines in inflamed tissues. In contrast, CCR5-deficient mice elicited down-regulation of Th2-related cytokine proteins following hRV infection. More interestingly, the lack of CCR5 altered the equilibrium of CD4+FoxP3+ Tregs and IL-17+CD4+ Th17 in inflamed tissues. CCR5-deficient mice showed increased frequency and absolute number of IL-17-producing CD4+ Th17 cells in lung tissues compared to wild-type mice, whereas the reduced infiltration of CD4+FoxP3+ Treg cells was observed. CCR5 deficiency resulted in the skewed production of Th17 and Th1 cytokines in lymph nodes and lungs upon OVA stimulation. Likewise, CCR5-deficient mice showed enhanced expression of Th17-inducing cytokines (IL-1ß, IL-6, and TNF-α) in lung tissues. These results imply that CCR5 deficiency facilitates Th17 airway inflammation during hRV-induced asthma exacerbation, along with suppressing Th2 responses. Furthermore, our results suggest that CCR5 attenuates hRV-induced neutrophilic airway inflammation through conserving the equilibrium of CD4+Foxp3+ Treg cells and IL-17+CD4+ Th17 cells in hRV-induced asthma exacerbation.


Asunto(s)
Asma/inmunología , Infecciones por Picornaviridae/inmunología , Receptores CCR5/inmunología , Linfocitos T Reguladores/inmunología , Animales , Asma/virología , Quimiotaxis de Leucocito/inmunología , Femenino , Inflamación/inducido químicamente , Inflamación/inmunología , Masculino , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Ovalbúmina/toxicidad , Rhinovirus , Brote de los Síntomas , Células Th17/inmunología
8.
Medicine (Baltimore) ; 101(35): e30179, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36107531

RESUMEN

This prospective observational study evaluated the effects of body fat on the pharmacologic effect of propofol. Hundred patients aged 18 to 75 years who were scheduled to undergo orthopedic surgery under regional block were enrolled. All participants underwent bioelectrical impedance analysis and were allocated into 2 groups: the high and normal adiposity group, according to percent body fat. Following successful regional block, propofol was incrementally infused until loss of consciousness (LOC) with a target-controlled infusion pump. The effect-site concentration of propofol at LOC and the total infused dose of propofol per total body weight until LOC were recorded. At the end of the surgery, the infusion of propofol was stopped. The elapsed time to recovery of consciousness (ROC) and the effect-site concentration at ROC were recorded. These pharmacologic data were compared between 2 groups. The effect-site concentration of propofol at LOC (µg/mL) was significantly lower in the high adiposity group than in the normal group in both sexes (3.5 ± 0.4 vs 3.9 ± 0.6; P = .020 in males, and 3.4 [interquartile range: 2.9-3.5] vs 3.8 [interquartile range: 3.3-3.9]; P = .006 in females). Total dose per total body weight until LOC (mg/kg) were also significantly lower in the high adiposity group than in the normal group. There was no significant difference in the data related to ROC. The pharmacologic effects of propofol may be affected by the composition of body components. The concentration of propofol using a target-controlled infusion system may be diminished in patients with a high proportion of body fat.


Asunto(s)
Propofol , Tejido Adiposo , Anestésicos Intravenosos , Femenino , Humanos , Masculino , Obesidad , Inconsciencia
9.
Immune Netw ; 21(4): e26, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34522439

RESUMEN

Asthma exacerbations are a major cause of intractable morbidity, increases in health care costs, and a greater progressive loss of lung function. Asthma exacerbations are most commonly triggered by respiratory viral infections, particularly with human rhinovirus (hRV). Respiratory viral infections are believed to affect the expression of indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in tryptophan catabolism, which is presumed to alter asthmatic airway inflammation. Here, we explored the detailed role of IDO in the progression of asthma exacerbations using a mouse model for asthma exacerbation caused by hRV infection. Our results reveal that IDO is required to prevent neutrophilic inflammation in the course of asthma exacerbation caused by an hRV infection, as corroborated by markedly enhanced Th17- and Th1-type neutrophilia in the airways of IDO-deficient mice. This neutrophilia was closely associated with disrupted expression of tight junctions and enhanced expression of inflammasome-related molecules and mucin-inducing genes. In addition, IDO ablation enhanced allergen-specific Th17- and Th1-biased CD4+ T-cell responses following hRV infection. The role of IDO in attenuating Th17- and Th1-type neutrophilic airway inflammation became more apparent in chronic asthma exacerbations after repeated allergen exposures and hRV infections. Furthermore, IDO enzymatic induction in leukocytes derived from the hematopoietic stem cell (HSC) lineage appeared to play a dominant role in attenuating Th17- and Th1-type neutrophilic inflammation in the airway following hRV infection. Therefore, IDO activity in HSC-derived leukocytes is required to regulate Th17- and Th1-type neutrophilic inflammation in the airway during asthma exacerbations caused by hRV infections.

10.
Immune Netw ; 19(5): e31, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31720042

RESUMEN

Asthma is one of the most common and chronic diseases characterized by multidimensional immune responses along with poor prognosis and severity. The heterogeneous nature of asthma may be attributed to a complex interplay between risk factors (either intrinsic or extrinsic) and specific pathogens such as respiratory viruses, and even bacteria. The intrinsic risk factors are highly correlated with asthma exacerbation in host, which may be mediated via genetic polymorphisms, enhanced airway epithelial lysis, apoptosis, and exaggerated viral replication in infected cells, resulting in reduced innate immune response and concomitant reduction of interferon (types I, II, and III) synthesis. The canonical features of allergic asthma include strong Th2-related inflammation, sensitivity to non-steroidal anti-inflammatory drugs (NSAIDs), eosinophilia, enhanced levels of Th2 cytokines, goblet cell hyperplasia, airway hyper-responsiveness, and airway remodeling. However, the NSAID-resistant non-Th2 asthma shows a characteristic neutrophilic influx, Th1/Th17 or even mixed (Th17-Th2) immune response and concurrent cytokine streams. Moreover, inhaled corticosteroid-resistant asthma may be associated with multifactorial innate and adaptive responses. In this review, we will discuss the findings of various in vivo and ex vivo models to establish the critical heterogenic asthmatic etiologies, host-pathogen relationships, humoral and cell-mediated immune responses, and subsequent mechanisms underlying asthma exacerbation triggered by respiratory viral infections.

11.
Front Immunol ; 10: 1467, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316515

RESUMEN

A coordinated host immune response mediated via chemokine network plays a crucial role in boosting defense mechanisms against pathogenic infections. The speed of Ag presentation and delivery by CD11c+ dendritic cells (DCs) to cognate T cells in lymphoid tissues may decide the pathological severity of the infection. Here, we investigated the role of CX3CR1 in the neuroinflammation induced by infection with Japanese encephalitis virus (JEV), a neurotrophic virus. Interestingly, CX3CR1 deficiency strongly enhanced susceptibility to JEV only after peripheral inoculation via footpad. By contrast, both CX3CR1+/+ and CX3CR1-/- mice showed comparable susceptibility to JEV following inoculation via intranasal and intraperitoneal routes. CX3CR1-/- mice exhibited lethal neuroinflammation after JEV inoculation via footpad route, showing high mortality, morbidity, pro-inflammatory cytokine expression, and uncontrolled CNS-infiltration of peripheral leukocytes including Ly-6Chi monocytes and Ly-6Ghi granulocytes. Furthermore, the absence of CX3CR1+CD11c+ DCs appeared to enhance susceptibility of CX3CR1-/- mice to JE after peripheral JEV inoculation. CX3CR1 ablation impaired the migration of CX3CR1+CD11c+ DCs from JEV-inoculated sites to draining lymph nodes (dLNs), resulting in decreased NK cell activation and JEV-specific CD4+/CD8+ T-cell responses. However, CX3CR1-competent mice showed rapid temporal expression of viral Ags in dLNs. Subsequently, JEV was rapidly cleared, with concomitant generation of antiviral NK cell activation and T-cell responses mediated by rapid migration of JEV Ag+CX3CR1+CD11c+ DCs. Using biallelic functional CX3CR1 expression system, the functional expression of CX3CR1 on CD11chi DCs appeared to be essentially required for inducing rapid and effective responses of NK cell activation and Ag-specific CD4+ T cells in dLNs. Strikingly, adoptive transfer of CX3CR1+CD11c+ DCs was found to completely restore the resistance of CX3CR1-/- recipients to JEV, as corroborated by the rapid delivery of JEV Ags in dLNs and attenuation of neuroinflammation in the CNS. Collectively, these results indicate that CX3CR1+CD11c+ DCs play an important role in generating rapid and effective responses of antiviral NK cell activation and Ag-specific T cells after peripheral inoculation with the virus, thereby resulting in conferring resistance to viral infection by reducing the peripheral viral burden.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/inmunología , Células Dendríticas/inmunología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/inmunología , Inflamación/inmunología , Tejido Linfoide/inmunología , Inmunidad Adaptativa/inmunología , Traslado Adoptivo/métodos , Animales , Antígenos Virales/inmunología , Antígeno CD11c/inmunología , Antígeno CD11c/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Células Dendríticas/metabolismo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/virología , Inflamación/virología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/virología , Tejido Linfoide/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología
12.
Immunology ; 123(3): 426-37, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17916164

RESUMEN

The strength and duration of an antigenic signal at the time of initial stimulation were assumed to affect the development and response of effectors and memory cells to secondary stimulation with the same antigen. To test this assumption, we used T-cell receptor (TCR)-transgenic CD4+ T cells that were stimulated in vitro with various antigen doses. The primary effector CD4+ T cells generated in response to low-dose antigen in vitro exhibited reduced clonal expansion upon secondary antigenic exposure after adoptive transfer to hosts. However, the magnitude of their contraction was much smaller than both those generated by high-dose antigen stimulation and by naïve CD4+ T cells, resulting in higher numbers of antigen-specific CD4+ T cells remaining until the memory stage. Moreover, secondary effectors and memory cells developed by secondary antigen exposure were not functionally impaired. In hosts given the low-dose antigen-experienced CD4+ T cells, we also observed accelerated recall responses upon injection of antigen-bearing antigen-presenting cells. These results suggest that primary TCR stimulation is important for developing optimal effectors during initial antigen exposure to confer long-lasting memory CD4+ T cells in response to secondary exposure.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/inmunología , Traslado Adoptivo , Animales , Antígenos/administración & dosificación , Células Cultivadas , Citocinas/biosíntesis , Relación Dosis-Respuesta Inmunológica , Inmunofenotipificación , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología
13.
Res Vet Sci ; 83(1): 73-81, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17196231

RESUMEN

To assess the correlation between the nature of immunity induced by different types of immunogens and the establishment of latent infection by wild-type pseudorabies virus (PrV), we used a murine model immunized with different immunogens, the PrV modified live vaccine (MLV), inactivated vaccine (IAV), and commercial oil-adjuvant subunit vaccine (OSV), via either intranasal (i.n.) or intramuscular (i.m.) route. Both MLV and IAV induced a different nature of immunity biased to Th1- and Th2-type, respectively, as judged by the ratio of PrV-specific IgG isotypes (IgG2a/IgG1) and the profile of cytokine IL-2, IL-4, and IFN-gamma production. In contrast, the OSV induced a lower isotype IgG2a to IgG1 ratio and higher level of IL-2 production. The MLV (inducing Th1-type) provided more effective protection against a virulent wild-type PrV challenge than IAV and OSV (inducing Th2- and mixed type, respectively). In addition, the MLV impeded the establishment of a latent infection with wild-type PrV, and the decrease in the PrV latency load by immunization with the MLV appeared to be mediated by the immune T-cells. These results demonstrate the substantial role of the immune responses driven by preceding vaccination in modulating the establishment of PrV latency caused by the post-infection of a field virus.


Asunto(s)
Herpesvirus Suido 1/inmunología , Vacunas contra la Seudorrabia/inmunología , Seudorrabia/prevención & control , Seudorrabia/virología , Latencia del Virus/fisiología , Animales , Anticuerpos Antivirales/sangre , Vías de Administración de Medicamentos , Femenino , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos C57BL , Seudorrabia/inmunología , Vacunas contra la Seudorrabia/administración & dosificación
14.
J Interferon Cytokine Res ; 26(10): 730-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17032167

RESUMEN

The immunomodulatory efficacy of interferon-gamma (IFN-gamma)-associated cytokines coadministered with a plasmid DNA vaccine has been investigated, with variable results. Therefore, to test the immunomodulatory effect of IFN-gamma-associated cytokines as vaccine adjuvant, the present study evaluated the immune responses induced by pseudorabies virus (PrV) gB-encoded plasmid DNA vaccine coadministered with IFN-gamma-associated cytokines and chemokines. These cytokines and chemokines included interleukin-12 (IL-12) and IL-18, as potent inducers of IFN-gamma, and IFN-gamma-inducible protein (IP-10), the production of which is IFN-gamma dependent. A coinjection of either IL-12 or IL-18 strongly suppressed the humoral antibody responses but increased the production of the Th1-type cytokines IFN-gamma and IL-2 from immune T cells. Such antibody suppression was closely related to the increased susceptibility against a virulent viral challenge. On the other hand, IP-10 exhibited enhanced immune responses in both antibody responses and IFN-gamma production of immune T cells and facilitated the prolonged survival of infected mice. In contrast, there was no significant change in the immune responses of the mice that received codelivery of IFN-gamma. Therefore, IFN-gamma-associated cytokines, as Th1-type inducers, can generate unexpected and unwanted effects, and their application as a vaccine adjuvant should be carefully evaluated depending on the target antigens.


Asunto(s)
Citocinas/genética , Herpesvirus Suido 1/inmunología , Vacunas contra Herpesvirus/inmunología , Proteínas del Envoltorio Viral/genética , Animales , Anticuerpos Antivirales/sangre , Quimiocina CXCL10 , Quimiocinas CXC/genética , Citocinas/biosíntesis , Femenino , Expresión Génica , Vacunas contra Herpesvirus/genética , Interferón gamma/biosíntesis , Interferón gamma/genética , Interleucina-12/genética , Interleucina-18/genética , Ratones , Ratones Endogámicos C57BL , Seudorrabia/inmunología , Linfocitos T/inmunología , Vacunas de ADN/inmunología , Proteínas del Envoltorio Viral/metabolismo
15.
FEMS Immunol Med Microbiol ; 47(3): 451-61, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16872383

RESUMEN

Glycoprotein B mediates the absorption and penetration of the pseudorabies virus in the form of an immunodominant Ag, and represents a major target for the development of new vaccines. This study evaluated the efficiency of live attenuated Salmonella typhimurium SL7207 for the oral delivery of DNA vaccine encoding the pseudorabies virus glycoprotein B (pCI-PrVgB) in vivo, leading to the generation of both systemic and mucosal immunity against the pseudorabies virus Ag. An oral transgene vaccination of pCI-PrVgB using a Salmonella carrier produced a broad spectrum of immunity at both the systemic and mucosal sites, whereas the intramuscular administration of a naked DNA vaccine elicited no mucosal immunoglobulin (Ig)A response. Interestingly, the Salmonella-mediated oral transgene vaccination of the pseudorabies virus glycoprotein B biased the immune responses to the Th2-type, as determined by the IgG2a/IgG1 ratio and the cytokine production profile. However, oral vaccination mediated by Salmonella harbouring pCI-PrVgB showed inferior protection to systemic immunization against virulent pseudorabies virus infection. The expression of transgene delivered by Salmonella bacteria in antigen-presenting cells of both the systemic and mucosal-associated lymphoid tissues was further demonstrated. These results highlight the potential use of live attenuated S. typhimurium for an oral transgene pseudorabies virus glycoprotein B vaccination to induce broad immune responses.


Asunto(s)
Vacunas contra la Seudorrabia/administración & dosificación , Salmonella typhimurium/inmunología , Vacunas de ADN/administración & dosificación , Proteínas del Envoltorio Viral/inmunología , Administración Oral , Animales , Femenino , Inmunidad Mucosa , Ratones , Seudorrabia/inmunología , Seudorrabia/prevención & control , Vacunas contra la Seudorrabia/inmunología , Vacunación , Vacunas Atenuadas , Vacunas de ADN/inmunología , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/genética
16.
J Microbiol ; 43(5): 430-6, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16273035

RESUMEN

In this study, the prevalence and quantity of a latent pseudorabies virus (PrV) infection in the nervous tissues of randomly selected pigs was determined via nested and real-time PCR. The nervous tissues, including the trigeminal ganglion (TG), olfactory bulb (OB), and brain stem (BS), were collected from the heads of 40 randomly selected pigs. The majority of the nervous tissues from the selected pigs evidenced a positively amplified band on nested PCR. In particular, nested PCR targeted to the PrV glycoprotein B (gB) gene yielded positive results in all of the BS samples. Nested PCR for either the gE or gG gene produced positive bands in a less number of nervous tissues (57.5% and 42.5%, respectively). Real-time PCR revealed that the examined tissues harbored large copy numbers of latent PrV DNA, ranging between 10(0.1) and 10(7.2) (1-1.58 x 10(7)) copies per 1 microg of genomic DNA. Real-time PCR targeted to the PrV gE gene exhibited an accumulated fluorescence of reporter dye at levels above threshold, thereby indicating a higher prevalence than was observed on the nested PCR (100% for BS, 92% for OB, and 85% for TG). These results indicate that a large number of farm-grown pigs are latently infected with a field PrV strain with a variety of copy numbers. This result is similar to what was found in association with the human herpes virus.


Asunto(s)
Herpesvirus Suido 1/fisiología , Sistema Nervioso/virología , Reacción en Cadena de la Polimerasa/métodos , Seudorrabia/virología , Enfermedades de los Porcinos/virología , Latencia del Virus , Mataderos , Animales , Cartilla de ADN , ADN Viral/análisis , ADN Viral/aislamiento & purificación , Herpesvirus Suido 1/clasificación , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/aislamiento & purificación , Porcinos
17.
Immunol Cell Biol ; 84(6): 502-11, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16869937

RESUMEN

A murine model immunized with plasmid DNA vaccine expressing three glycoproteins pCIgB, pCIgC and pCIgD were used to examine the relative potency of major glycoproteins as well as the contribution of immunological parameters in providing protective immunity against the pseudorabies virus (PrV). Among the three glycoprotein-encoded plasmid DNA vaccines, pCIgB produced the strongest response of PrV-specific IgG in the sera. pCIgB and pCIgD also induced a contrast pattern of immunity that was biased to the Th1 and Th2 types, respectively. pCIgC showed the potent inducer of CD8+ T-cell-mediated CTL activity against PrV. In addition, a cocktail vaccination of all three glycoprotein-encoded plasmid DNA vaccines induced the production of both cytokine types, Th1 and Th2 with levels that were the same as that of each immunogen. With regard to protective efficacy, pCIgB induced the most effective protection against a virulent virus challenge and a cocktail vaccination appeared to offer complete protection against a 5 LD50 challenge, but not a 10 LD50 one. pCIgD induced protection that was same as pCIgB, but pCIgC offered no effective protection. These results show the relative potency of the three glycoprotein-encoded PrV DNA vaccines in inducing protective immunity against PrV infection. The results in this study support previous results showing the importance of Th1-type CD4+ T cells and their antibodies in conferring protection.


Asunto(s)
Formación de Anticuerpos , Glicoproteínas/inmunología , Herpesvirus Suido 1/inmunología , Vacunas contra la Seudorrabia/inmunología , Vacunas de ADN/inmunología , Animales , Femenino , Vectores Genéticos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Ratones , Ratones Endogámicos C57BL
18.
Microbiol Immunol ; 50(2): 83-92, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16490926

RESUMEN

Granulocyte/macrophage colony-stimulatory factor (GM-CSF) is an attractive adjuvant for a DNA vaccine on account of its ability to recruit antigen-presenting cells (APCs) to the site of antigen synthesis as well as its ability to stimulate the maturation of dendritic cells (DCs). This study evaluated the utility of GM-CSF cDNA as a DNA vaccine adjuvant for glycoprotein B (gB) of pseudorabies virus (PrV) in a murine model. The co-injection of GM-CSF DNA enhanced the levels of serum PrV-specific IgG with a 1.5-to 2-fold increase. Moreover, GM-CSF co-injection inhibited the production of IgG2a isotype. However, it enhanced production of an IgG1 isotype resulting in humoral responses biased to the Th2-type against PrV antigen. In contrast, the co-administration of GM-CSF DNA enhanced the T cell-mediated immunity biased to the Th1-type, as judged by the significantly higher level of cytokine IL-2 and IFN-gamma production but not IL-4. When challenged with a lethal dose of PrV, the GM-CSF co-injection enhanced the resistance against a PrV infection. This suggests that co-inoculation with a vector expressing GM-CSF enhanced the protective immunity against a PrV infection. This immunity was caused by the induction of increased humoral and cellular immunity in response to PrV antigen.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Herpesvirus Suido 1/inmunología , Vacunas contra la Seudorrabia/inmunología , Seudorrabia/inmunología , Vacunas de ADN/inmunología , Adyuvantes Inmunológicos/genética , Animales , Anticuerpos Antivirales/sangre , Encéfalo/virología , Ensayo de Inmunoadsorción Enzimática , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Isotipos de Inmunoglobulinas , Interferón gamma/inmunología , Interleucina-2/inmunología , Interleucina-4/inmunología , Ratones , Ratones Endogámicos C57BL , Plásmidos/genética , Plásmidos/inmunología , Seudorrabia/prevención & control , Vacunas contra la Seudorrabia/genética , Vacunas contra la Seudorrabia/uso terapéutico , Vacunas de ADN/genética , Vacunas de ADN/uso terapéutico , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA