Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892310

RESUMEN

Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancer types, indicating a poor survival prognosis with a more aggressive biology of metastasis to the lung and a short response duration to available therapies. Ibulocydine (IB) is a novel (cyclin-dependent kinase) CDK7/9 inhibitor prodrug displaying potent anti-cancer effects against various cancer cell types. We performed in vitro and in vivo experiments to determine whether IB inhibits metastasis and eventually overcomes the poor drug response in TNBC. The result showed that IB inhibited the growth of TNBC cells by inducing caspase-mediated apoptosis and blocking metastasis by reducing MMP-9 expression in vitro. Concurrently, in vivo experiments using the metastasis model showed that IB inhibited metastasis of MDA-MB-231-Luc cells to the lung. Collectively, these results demonstrate that IB inhibited the growth of TNBC cells and blocked metastasis by regulating MMP-9 expression, suggesting a novel therapeutic agent for metastatic TNBC.


Asunto(s)
Movimiento Celular , Metaloproteinasa 9 de la Matriz , Neoplasias de la Mama Triple Negativas , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Movimiento Celular/efectos de los fármacos , Femenino , Línea Celular Tumoral , Animales , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Invasividad Neoplásica , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones Desnudos
2.
Cancer Sci ; 114(9): 3583-3594, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37650703

RESUMEN

Radiotherapy (RT) plays an important role in localized lung cancer treatments. Although RT locally targets and controls malignant lesions, RT resistance prevents RT from being an effective treatment for lung cancer. In this study, we identified phosphomevalonate kinase (PMVK) as a novel radiosensitizing target and explored its underlying mechanism. We found that cell viability and survival fraction after RT were significantly decreased by PMVK knockdown in lung cancer cell lines. RT increased apoptosis, DNA damage, and G2/M phase arrest after PMVK knockdown. Also, after PMVK knockdown, radiosensitivity was increased by inhibiting the DNA repair pathway, homologous recombination, via downregulation of replication protein A1 (RPA1). RPA1 downregulation was induced through the ubiquitin-proteasome system. Moreover, a stable shRNA PMVK mouse xenograft model verified the radiosensitizing effects of PMVK in vivo. Furthermore, PMVK expression was increased in lung cancer tissues and significantly correlated with patient survival and recurrence. Our results demonstrate that PMVK knockdown enhances radiosensitivity through an impaired HR repair pathway by RPA1 ubiquitination in lung cancer, suggesting that PMVK knockdown may offer an effective therapeutic strategy to improve the therapeutic efficacy of RT.


Asunto(s)
Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Fosfotransferasas (Aceptor del Grupo Fosfato) , Tolerancia a Radiación/genética , Ubiquitinación , Modelos Animales de Enfermedad
3.
Cancer Cell Int ; 23(1): 172, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596639

RESUMEN

BACKGROUND: The B7-H3 protein, encoded by the CD276 gene, is a member of the B7 family of proteins and a transmembrane glycoprotein. It is highly expressed in various solid tumors, such as lung and breast cancer, and has been associated with limited expression in normal tissues and poor clinical outcomes across different malignancies. Additionally, B7-H3 plays a crucial role in anticancer immune responses. Antibody-drug conjugates (ADCs) are a promising therapeutic modality, utilizing antibodies targeting tumor antigens to selectively and effectively deliver potent cytotoxic agents to tumors. METHODS: In this study, we demonstrate the potential of a novel B7-H3-targeting ADC, ITC-6102RO, for B7-H3-targeted therapy. ITC-6102RO was developed and conjugated with dHBD, a soluble derivative of pyrrolobenzodiazepine (PBD), using Ortho Hydroxy-Protected Aryl Sulfate (OHPAS) linkers with high biostability. We assessed the cytotoxicity and internalization of ITC-6102RO in B7-H3 overexpressing cell lines in vitro and evaluated its anticancer efficacy and mode of action in B7-H3 overexpressing cell-derived and patient-derived xenograft models in vivo. RESULTS: ITC-6102RO inhibited cell viability in B7-H3-positive lung and breast cancer cell lines, inducing cell cycle arrest in the S phase, DNA damage, and apoptosis in vitro. The binding activity and selectivity of ITC-6102RO with B7-H3 were comparable to those of the unconjugated anti-B7-H3 antibody. Furthermore, ITC-6102RO proved effective in B7-H3-positive JIMT-1 subcutaneously xenografted mice and exhibited a potent antitumor effect on B7-H3-positive lung cancer patient-derived xenograft (PDX) models. The mode of action, including S phase arrest and DNA damage induced by dHBD, was confirmed in JIMT-1 tumor tissues. CONCLUSIONS: Our preclinical data indicate that ITC-6102RO is a promising therapeutic agent for B7-H3-targeted therapy. Moreover, we anticipate that OHPAS linkers will serve as a valuable platform for developing novel ADCs targeting a wide range of targets.

4.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232715

RESUMEN

PAUF, a tumor-promoting protein secreted by cancer cells, exerts paracrine effects on immune cells through TLR4 receptors expressed on immune cell surfaces. This study aimed to investigate if PAUF elicits autocrine effects on pancreatic cancer (PC) cells through TLR4, a receptor that is overexpressed on PC cells. In this study, TLR4 expression was detected in PC cells only, but not normal pancreatic cells. The migration of TLR4 high-expressing PC cells (i.e., BxPC-3) was reduced by a selective TLR4 inhibitor, in a dose-dependent manner. Using TLR4 overexpressed and knockout PC cell lines, we observed direct PAUF-TLR4 binding on the PC cell surfaces, and that PAUF-induced cancer migration may be mediated exclusively through the TLR4 receptor. Further experiments showed that PAUF signaling was passed down through the TLR4/MyD88 pathway without the involvement of the TLR4/TRIF pathway. TLR4 knockout also downregulated PC membrane PD-L1 expression, which was not influenced by PAUF. To the best of our knowledge, TLR4 is the first receptor identified on cancer cells that mediates PAUF's migration-promoting effect. The results of this study enhanced our understanding of the mechanism of PAUF-induced tumor-promoting effects and suggests that TLR4 expression on cancer cells may be an important biomarker for anti-PAUF treatment.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Factor 88 de Diferenciación Mieloide , Subunidad p50 de NF-kappa B , Neoplasias Pancreáticas , Receptor Toll-Like 4 , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lectinas/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Neoplasias Pancreáticas
5.
Mol Cancer ; 20(1): 133, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649584

RESUMEN

BACKGROUND: AMP-activated protein kinase (AMPK) is a metabolic sensor that maintains energy homeostasis. AMPK functions as a tumor suppressor in different cancers; however, its role in regulating antitumor immunity, particularly the function of regulatory T cells (Tregs), is poorly defined. METHODS: AMPKα1fl/flFoxp3YFP-Cre, Foxp3YFP-Cre, Rag1-/-, and C57BL/6 J mice were used for our research. Flow cytometry and cell sorting, western blotting, immuno-precipitation, immuno-fluorescence, glycolysis assay, and qRT-PCR were used to investigate the role of AMPK in suppressing programmed cell death 1 (PD-1) expression and for mechanistic investigation. RESULTS: The deletion of the AMPKα1 subunit in Tregs accelerates tumor growth by increasing the expression of PD-1. Metabolically, loss of AMPK in Tregs promotes glycolysis and the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a key enzyme of the mevalonate pathway. Mechanistically, AMPK activates the p38 mitogen-activated protein kinase (MAPK) that phosphorylates glycogen synthase kinase-3ß (GSK-3ß), inhibiting the expression of PD-1 in Tregs. CONCLUSION: Our study identified an AMPK regulatory mechanism of PD-1 expression via the HMGCR/p38 MAPK/GSK3ß signaling pathway. We propose that the AMPK activator can display synergic antitumor effect in murine tumor models, supporting their potential clinical use when combined with anti-PD-1 antibody, anti-CTLA-4 antibody, or a HMGCR inhibitor.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inmunomodulación , Receptor de Muerte Celular Programada 1/genética , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo Energético , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Inmunofenotipificación , Ratones , Receptor de Muerte Celular Programada 1/metabolismo
6.
Biochem Biophys Res Commun ; 563: 15-22, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34058470

RESUMEN

Helicobacter pylori infection is a crucial factor in the development of gastric cancer (GC). Molecular therapeutic targets and mechanisms contributing to H. pylori infection-associated GC induction are poorly understood and this study aimed to fill that research gap. We found that the nuclear receptor estrogen-related receptor gamma (ESRRG) is a candidate factor influencing H. pylori infection-driven GC. ESRRG suppressed H. pylori infection and cell growth induced by H. pylori infection in GC cells and organoid models In addition, H. pylori infection downregulates ESRRG expression. Gene expression profiling revealed that trefoil factor 1 (TFF1), a well-known tumor suppressor in GC, is a downstream target of ESRRG. Mechanistically, ESRRG directly binds to the TFF1 promoter and induces TFF1 gene expression. Furthermore, TFF1 activation by ESRRG was inhibited by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/p65, which is induced by inflammation, such as by H. pylori infection. Our current study provides new molecular insights into how ESRRG regulates H. pylori infection, contributing to GC development. We suggest that modulation of ESRRG-suppressing H. pylori infection could be a therapeutic target for the treatment of GC patients.


Asunto(s)
Infecciones por Helicobacter/metabolismo , Receptores de Estrógenos/metabolismo , Neoplasias Gástricas/metabolismo , Factor Trefoil-1/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Gástricas/patología
7.
Biochem Biophys Res Commun ; 528(2): 376-382, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32087970

RESUMEN

The RNA binding proteins (RBPs) have multiple roles in human cancer. However, their molecular target and function have not been clearly identified. Our genomic analysis derived from patients reveals that NONO is a potential oncogenic gene in lung cancer. NONO is highly expressed in lung cancer tissues compared with normal tissues, and its expression has been correlated with the prognosis of lung cancer patients. We found that NONO significantly influences cancer cell proliferation in lung cancer. Gene expression profiles with NONO-depleted cells revealed that the sirtuin signaling pathway is highly correlated with NONO. Thus, NONO-silenced cells caused reduction of the TCA cycle and glycolysis metabolism. We identified that NONO regulated NAMPT, which is a well-known gene involved in sirtuin signaling, and NONO has a significant correlation with NAMPT in lung cancer patients. We propose that NONO modulates energy metabolism by direct interaction with NAMPT and suggest that a functional relationship between NONO and NAMPT contributes to lung cancer cell survival. Targeting the axis can be a promising approach for patient treatment in lung cancer.


Asunto(s)
Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Metabolismo Energético , Neoplasias Pulmonares/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Proliferación Celular , Citocinas/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Nicotinamida Fosforribosiltransferasa/genética , Proteínas de Unión al ARN/genética
8.
J Korean Med Sci ; 35(5): e31, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32030920

RESUMEN

BACKGROUND: Mechanism and predictive biomarkers for tyrosine kinase inhibitor (TKI) resistance of advanced clear cell renal cell carcinoma (ccRCC) have not been fully evaluated. METHODS: We performed gene expression profiling on samples from an acquired TKI resistance cohort that consisted of 10 cases of TKI-treated ccRCC patients with matched tumor tissues harvested at pre-treatment and TKI-resistant post-treatment periods. In addition, a public microarray dataset from patient-derived xenograft model for TKI-treated ccRCC (GSE76068) was retrieved. Commonly altered pathways between the datasets were investigated by Ingenuity Pathway Analysis using commonly regulated differently expressed genes (DEGs). The significance of candidate DEG on intrinsic TKI resistance was assessed through immunohistochemistry in a separate cohort of 101 TKI-treated ccRCC cases. RESULTS: TNFRSF1A gene expression and tumor necrosis factor (TNF)-α pathway were upregulated in ccRCCs with acquired TKI resistance in both microarray datasets. Also, high expression (> 10% of labeled tumor cells) of TNF receptor 1 (TNFR1), the protein product of TNFRSF1A gene, was correlated with sarcomatoid dedifferentiation and was an independent predictive factor of clinically unfavorable response and shorter survivals in separated TKI-treated ccRCC cohort. CONCLUSION: TNF-α signaling may play a role in TKI resistance, and TNFR1 expression may serve as a predictive biomarker for clinically unfavorable TKI responses in ccRCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Resistencia a Antineoplásicos , Neoplasias Renales , Inhibidores de Proteínas Quinasas , Receptores Tipo I de Factores de Necrosis Tumoral , Transducción de Señal , Factor de Necrosis Tumoral alfa , Adulto , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/terapia , Femenino , Humanos , Inmunohistoquímica , Neoplasias Renales/diagnóstico , Neoplasias Renales/metabolismo , Neoplasias Renales/terapia , Masculino , Persona de Mediana Edad , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Análisis de Supervivencia , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/metabolismo
9.
Biochem Biophys Res Commun ; 515(4): 725, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31239030

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors. The authors have indicated that Fig. 1D data originated from another source not specified in the article. They also indicated image duplication in Fig. 1A and B. The authors of this article would like to apologize to all affected parties.

10.
Gut ; 66(2): 215-225, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27507904

RESUMEN

OBJECTIVE: Oesophageal squamous cell carcinoma (ESCC) is a heterogeneous disease with variable outcomes that are challenging to predict. A better understanding of the biology of ESCC recurrence is needed to improve patient care. Our goal was to identify small non-coding RNAs (sncRNAs) that could predict the likelihood of recurrence after surgical resection and to uncover potential molecular mechanisms that dictate clinical heterogeneity. DESIGN: We developed a robust prediction model for recurrence based on the analysis of the expression profile data of sncRNAs from 108 fresh frozen ESCC specimens as a discovery set and assessment of the associations between sncRNAs and recurrence-free survival (RFS). We also evaluated the mechanistic and therapeutic implications of sncRNA obtained through integrated analysis from multiple datasets. RESULTS: We developed a risk assessment score (RAS) for recurrence with three sncRNAs (microRNA (miR)-223, miR-1269a and nc886) whose expression was significantly associated with RFS in the discovery cohort (n=108). RAS was validated in an independent cohort of 512 patients. In multivariable analysis, RAS was an independent predictor of recurrence (HR, 2.27; 95% CI, 1.26 to 4.09; p=0.007). This signature implies the expression of ΔNp63 and multiple alterations of driver genes like PIK3CA. We suggested therapeutic potentials of immune checkpoint inhibitors in low-risk patients, and Polo-like kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and histone deacetylase inhibitors in high-risk patients. CONCLUSION: We developed an easy-to-use prognostic model with three sncRNAs as robust prognostic markers for postoperative recurrence of ESCC. We anticipate that such a stratified and systematic, tumour-specific biological approach will potentially contribute to significant improvement in ESCC treatment.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , MicroARNs/análisis , Recurrencia Local de Neoplasia/genética , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/cirugía , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I , Supervivencia sin Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/cirugía , Femenino , Genómica , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Modelos Biológicos , Terapia Molecular Dirigida , Fosfatidilinositol 3-Quinasas/genética , Valor Predictivo de las Pruebas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Medición de Riesgo , Biología de Sistemas , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Quinasa Tipo Polo 1
11.
Hepatology ; 63(1): 159-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26389641

RESUMEN

UNLABELLED: Metabolic activation is a common feature of many cancer cells and is frequently associated with the clinical outcomes of various cancers, including hepatocellular carcinoma. Thus, aberrantly activated metabolic pathways in cancer cells are attractive targets for cancer therapy. Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ) are oncogenic downstream effectors of the Hippo tumor suppressor pathway, which is frequently inactivated in many cancers. Our study revealed that YAP1/TAZ regulates amino acid metabolism by up-regulating expression of the amino acid transporters solute carrier family 38 member 1 (SLC38A1) and solute carrier family 7 member 5 (SLC7A5). Subsequently, increased uptake of amino acids by the transporters (SLC38A1 and SLC7A5) activates mammalian target of rapamycin complex 1 (mTORC1), a master regulator of cell growth, and stimulates cell proliferation. We also show that high expression of SLC38A1 and SLC7A5 is significantly associated with shorter survival in hepatocellular carcinoma patients. Furthermore, inhibition of the transporters and mTORC1 significantly blocks YAP1/TAZ-mediated tumorigenesis in the liver. These findings elucidate regulatory networks connecting the Hippo pathway to mTORC1 through amino acid metabolism and the mechanism's potential clinical implications for treating hepatocellular carcinoma. CONCLUSION: YAP1 and TAZ regulate cancer metabolism and mTORC1 through regulation of amino acid transportation, and two amino acid transporters, SLC38A1 and SLC7A5, might be important therapeutic targets.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Sistemas de Transporte de Aminoácidos/fisiología , Carcinoma Hepatocelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neoplasias Hepáticas/metabolismo , Complejos Multiproteicos/fisiología , Fosfoproteínas/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Carcinoma Hepatocelular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Fosfoproteínas/genética , Estructura Terciaria de Proteína , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
16.
PLoS Med ; 11(12): e1001770, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25536056

RESUMEN

BACKGROUND: Typically observed at 2 y after surgical resection, late recurrence is a major challenge in the management of hepatocellular carcinoma (HCC). We aimed to develop a genomic predictor that can identify patients at high risk for late recurrence and assess its clinical implications. METHODS AND FINDINGS: Systematic analysis of gene expression data from human liver undergoing hepatic injury and regeneration revealed a 233-gene signature that was significantly associated with late recurrence of HCC. Using this signature, we developed a prognostic predictor that can identify patients at high risk of late recurrence, and tested and validated the robustness of the predictor in patients (n = 396) who underwent surgery between 1990 and 2011 at four centers (210 recurrences during a median of 3.7 y of follow-up). In multivariate analysis, this signature was the strongest risk factor for late recurrence (hazard ratio, 2.2; 95% confidence interval, 1.3-3.7; p = 0.002). In contrast, our previously developed tumor-derived 65-gene risk score was significantly associated with early recurrence (p = 0.005) but not with late recurrence (p = 0.7). In multivariate analysis, the 65-gene risk score was the strongest risk factor for very early recurrence (<1 y after surgical resection) (hazard ratio, 1.7; 95% confidence interval, 1.1-2.6; p = 0.01). The potential significance of STAT3 activation in late recurrence was predicted by gene network analysis and validated later. We also developed and validated 4- and 20-gene predictors from the full 233-gene predictor. The main limitation of the study is that most of the patients in our study were hepatitis B virus-positive. Further investigations are needed to test our prediction models in patients with different etiologies of HCC, such as hepatitis C virus. CONCLUSIONS: Two independently developed predictors reflected well the differences between early and late recurrence of HCC at the molecular level and provided new biomarkers for risk stratification. Please see later in the article for the Editors' Summary.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Recurrencia Local de Neoplasia/genética , Factores de Riesgo , Factor de Transcripción STAT3/genética , Adulto Joven
17.
Hepatology ; 58(1): 182-91, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23389994

RESUMEN

UNLABELLED: Metabolic changes are common features of many cancer cells and are frequently associated with the clinical outcome of patients with various cancers, including hepatocellular carcinoma (HCC). Thus, aberrant metabolic pathways in cancer cells are attractive targets for cancer therapy. However, our understanding of cancer-specific regulatory mechanisms of cell metabolism is still very limited. We found that Tat-activating regulatory DNA-binding protein (TARDBP) is a novel regulator of glycolysis in HCC cells. TARDBP regulates expression of the platelet isoform of phosphofructokinase (PFKP), the rate-limiting enzyme of glycolysis that catalyzes the irreversible conversion of fructose-6-phosphate to fructose-1,6-bisphosphate. Silencing of TARDBP expression in multiple HCC cell lines leads to impaired glucose metabolism and inhibition of in vitro and in vivo growth of HCC cells. Notably, the microRNA 520 (miR-520) family is an intermediate regulator of TARDBP-mediated regulation of glycolysis. Mechanistically, TARDBP suppressed expression of the miR-520 family, which, in turn, inhibited expression of PFKP. We further showed that expression of TARDBP is significantly associated with the overall survival of patients with HCC. CONCLUSION: Our study provides new mechanistic insights into the regulation of glycolysis in HCC cells and reveals TARDBP as a potential therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Proteínas de Unión al ADN/fisiología , Neoplasias Hepáticas/fisiopatología , MicroARNs/fisiología , Fosfofructoquinasa-1 Tipo C/genética , Animales , Plaquetas/enzimología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Femenino , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , MicroARNs/antagonistas & inhibidores
18.
Proc Natl Acad Sci U S A ; 108(42): 17456-61, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21987811

RESUMEN

Although the importance of the cellular microenvironment (soil) during invasion and metastasis of cancer cells (seed) has been well-recognized, technical challenges have limited the ability to assess the influence of the microenvironment on cancer cells at the molecular level. Here, we show that an experimental strategy, competitive cross-species hybridization of microarray experiments, can characterize the influence of different microenvironments on cancer cells by independently extracting gene expression data of cancer and host cells when human cancer cells were xenografted into different organ sites of immunocompromised mice. Surprisingly, the analysis of gene expression data showed that the brain microenvironment induces complete reprogramming of metastasized cancer cells, resulting in a gain of neuronal cell characteristics and mimicking neurogenesis during development. We also show that epigenetic changes coincide with transcriptional reprogramming in cancer cells. These observations provide proof of principle for competitive cross-species hybridization of microarray experiments to characterize the effect of the microenvironment on tumor cell behavior.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Animales , Astrocitos/metabolismo , Secuencia de Bases , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Metilación de ADN , Cartilla de ADN/genética , ADN de Neoplasias/genética , Epigénesis Genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Neuronas/metabolismo , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de la Especie , Transcriptoma , Trasplante Heterólogo , Microambiente Tumoral/genética
19.
Plast Reconstr Surg Glob Open ; 12(4): e5718, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38596579

RESUMEN

Chronic recurrent multifocal osteomyelitis (CRMO) is a rare autoimmune disease that typically develops during adolescence and primarily affects women. CRMO primarily targets the bone in arms and legs, with sporadic occurrences in the mandible. CRMO is typically managed with medical treatment, and the efficacy of surgery remains controversial. Complications of surgery include massive bleeding and potential flare-up of CRMO symptoms. Herein, we report a patient with CRMO who had lesions in the bilateral rami of the mandible treated with aesthetic mandibular angloplasty. This is the first case of aesthetic mandibular angloplasty in a patient with CRMO who had bilateral rami involvement of the mandible. The patient began experiencing jaw pain accompanied by swelling and throbbing discomfort beneath the jawline at the age of 10. A pediatrician diagnosed CRMO, and the symptoms were controlled with nonsteroidal antiinflammatory drugs and immunosuppressants (infliximab, adalimumab). Aesthetic mandibular angloplasty was performed at our center because of mandibular hypertrophy. This procedure necessitated considerable removal of the spongy bone, raising concerns about potential massive intraoperative bleeding. Approximately 1.5 cm of the mandibular body was excised to reveal the cortical bone. Bleeding during surgery was not severe, rendering blood transfusions unnecessary. The patient was satisfied with the surgical results. This case indicates the feasibility of angloplasty for such cases.

20.
Genes Genomics ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847971

RESUMEN

BACKGROUND: RNA-binding proteins (RBPs) perform various biological functions in humans and are associated with several diseases, including cancer. Therefore, RBPs have emerged as novel therapeutic targets. Although recent investigations have shown that RBPs have crucial functions in breast cancer (BC), detailed research is underway to determine the RBPs that are closely related to cancers. OBJECTIVE: To provide an insight into estrogen receptor (ER) regulation by cold-inducible RNA binding protein (CIRBP) as a novel therapeutic target. RESULTS: By analyzing the genomic data, we identified a potential RBP in BC. We found that CIRBP is highly correlated with ER function and influences clinical outcomes, such as patient survival and endocrine therapy responsiveness. In addition, CIRBP influences the proliferation of BC cells by directly binding to ER-RNA. CONCLUSION: Our results suggest that CIRBP is a novel upstream regulator of ER and that the interplay between CIRBP and ER may be associated with the clinical relevance of BC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA