RESUMEN
BACKGROUND: Maternal hemorrhage protocols involve risk screening. These protocols prepare clinicians for potential hemorrhage and transfusion in individual patients. Patient-specific estimation and stratification of risk may improve maternal outcomes. STUDY DESIGN AND METHODS: Prediction models for hemorrhage and transfusion were trained and tested in a data set of 74 variables from 63 973 deliveries (97.6% of the source population of 65 560 deliveries included in a perinatal database from an academic urban delivery center) with sufficient data at pertinent time points: antepartum, peripartum, and postpartum. Hemorrhage and transfusion were present in 6% and 1.6% of deliveries, respectively. Model performance was evaluated with the receiver operating characteristic (ROC), precision-recall curves, and the Hosmer-Lemeshow calibration statistic. RESULTS: For hemorrhage risk prediction, logistic regression model discrimination showed ROCs of 0.633, 0.643, and 0.661 for the antepartum, peripartum, and postpartum models, respectively. These improve upon the California Maternal Quality Care Collaborative (CMQCC) accuracy of 0.613 for hemorrhage. Predictions of transfusion resulted in ROCs of 0.806, 0.822, and 0.854 for the antepartum, peripartum, and postpartum models, respectively. Previously described and new risk factors were identified. Models were not well calibrated with Hosmer-Lemeshow statistic P values between .001 and .6. CONCLUSIONS: Our models improve on existing risk assessment; however, further enhancement might require the inclusion of more granular, dynamic data. With the goal of increasing translatability, this work was distilled to an online open-source repository, including a form allowing risk factor inputs and outputs of CMQCC risk, alongside our numerical risk estimation and stratification of hemorrhage and transfusion.
Asunto(s)
Transfusión Sanguínea/estadística & datos numéricos , Modelos Logísticos , Hemorragia Posparto/epidemiología , Complicaciones Hematológicas del Embarazo/epidemiología , Curva ROC , Medición de Riesgo/métodos , Hemorragia Uterina/epidemiología , Adulto , Cesárea/estadística & datos numéricos , Bases de Datos Factuales/estadística & datos numéricos , Conjuntos de Datos como Asunto/estadística & datos numéricos , Parto Obstétrico/métodos , Femenino , Humanos , Periodo Periparto , Hemorragia Posparto/terapia , Embarazo , Complicaciones del Embarazo/epidemiología , Complicaciones Hematológicas del Embarazo/terapia , Utilización de Procedimientos y Técnicas/estadística & datos numéricos , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo , Fumar/epidemiología , Hemorragia Uterina/terapiaRESUMEN
Cystic fibrosis (CF) disease is caused by mutations affecting the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel expressed in the mucosal side of epithelial tissue. In the airway, dysfunctional CFTR results in a transepithelial osmotic imbalance leading to hyperabsorption of airway surface liquid mucostasis, chronic inflammation, and eventual respiratory failure. Human nasal epithelial cell cultures from healthy and CF donors were used to perform studies of liquid and solute transport dynamics at an air/liquid interface in order to emulate the in vivo airway. Then, these results were used to inform a quantitative systems pharmacology model of airway epithelium describing electrically and chemically driven transcellular ionic transport, contributions of both convective and diffusive paracellular solute transport, and osmotically driven transepithelial water dynamics. Model predictions showed CF cultures, relative to non-CF ones, have increased apical and basolateral water permeabilities, and increase paracellular permeability and transepithelial chemical driving force for a radiolabeled tracer used to track small molecule absorption. These results provide a computational platform to better understand and probe the mechanisms behind the liquid hyperabsorption and small molecule retention profiles observed in the CF airway.
Asunto(s)
Fibrosis Quística/metabolismo , Modelos Biológicos , Mucosa Nasal/metabolismo , Ácido Pentético/farmacocinética , Adulto , Estudios de Casos y Controles , Células Cultivadas , Femenino , Humanos , Transporte Iónico , Masculino , Permeabilidad , Tecnecio/farmacocinética , Adulto JovenRESUMEN
Immunosenescence, an age-related decline in immune function, is a major contributor to morbidity and mortality in the elderly. Older hosts exhibit a delayed onset of immunity and prolonged inflammation after an infection, leading to excess damage and a greater likelihood of death. Our study applies a rule-based model to infer which components of the immune response are most changed in an aged host. Two groups of BALB/c mice (aged 12 to 16 weeks and 72 to 76 weeks) were infected with 2 inocula: a survivable dose of 50 PFU and a lethal dose of 500 PFU. Data were measured at 10 points over 19 days in the sublethal case and at 6 points over 7 days in the lethal case, after which all mice had died. Data varied primarily in the onset of immunity, particularly the inflammatory response, which led to a 2-day delay in the clearance of the virus from older hosts in the sublethal cohort. We developed a Boolean model to describe the interactions between the virus and 21 immune components, including cells, chemokines, and cytokines, of innate and adaptive immunity. The model identifies distinct sets of rules for each age group by using Boolean operators to describe the complex series of interactions that activate and deactivate immune components. Our model accurately simulates the immune responses of mice of both ages and with both inocula included in the data (95% accurate for younger mice and 94% accurate for older mice) and shows distinct rule choices for the innate immunity arm of the model between younger and aging mice in response to influenza A virus infection.IMPORTANCE Influenza virus infection causes high morbidity and mortality rates every year, especially in the elderly. The elderly tend to have a delayed onset of many immune responses as well as prolonged inflammatory responses, leading to an overall weakened response to infection. Many of the details of immune mechanisms that change with age are currently not well understood. We present a rule-based model of the intrahost immune response to influenza virus infection. The model is fit to experimental data for young and old mice infected with influenza virus. We generated distinct sets of rules for each age group to capture the temporal differences seen in the immune responses of these mice. These rules describe a network of interactions leading to either clearance of the virus or death of the host, depending on the initial dosage of the virus. Our models clearly demonstrate differences in these two age groups, particularly in the innate immune responses.
Asunto(s)
Interacciones Huésped-Patógeno , Inmunosenescencia , Modelos Inmunológicos , Infecciones por Orthomyxoviridae/inmunología , Inmunidad Adaptativa , Factores de Edad , Animales , Quimiocinas/inmunología , Citocinas/inmunología , Inmunidad Innata , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Análisis de SupervivenciaRESUMEN
α-Tocopherol (α-TOH) is the primary lipophilic radical trapping antioxidant in human tissues. Oxidative catabolism of α-tocopherol (αTOH) is initiated by ω-hydroxylation of the terminal carbon (C-13) of the isoprenoid sidechain followed by oxidative transformations that sequentially truncate the chain to yield the 2,5,7,8-tetramethyl(3'carboxyethyl)-6-hydroxychroman (α-CEHC). After conjugation to glucuronic acid, 3'-carboxyethyl-6-hydroxychroman glucuronide is excreted in urine. We report here that the same enzyme that accomplishes this task, the cytochrome P450 monooxygenase CYP-4F2, can also ω-hydroxylate the terminal carbon of α-tocopheryl quinone. A standard sample of ω-OH-α-tocopheryl quinone (ω-OH-α-TQ) was synthesized as a mixture of stereoisomers by allylic oxidation of α-tocotrienol using SeO2 followed by double-bond reduction and oxidation to the quinone. After incubating human liver microsomes or insect cell microsomes expressing only recombinant human CYP-4F2, cytochrome b5, and NADPH P450 reductase with d6-α-tocopheryl quinone (d6-αTQ), we showed that the ω-hydroxylated (13-OH) d6-α-TQ was produced. We further identified the production of the terminal carboxylic acid d6-13-COOH-αTQ. The ramifications of this discovery to the understanding of tocopherol utilization and metabolism, including the quantitative importance of the αTQ-ω-hydroxylase pathway in humans, are discussed.
Asunto(s)
Familia 4 del Citocromo P450/metabolismo , Microsomas Hepáticos/metabolismo , Vitamina E/análogos & derivados , Vitamina E/metabolismo , Animales , Humanos , Hidroxilación , Insectos , Oxidación-Reducción , Proteínas Recombinantes/metabolismoRESUMEN
The inverse problem associated with fitting parameters of an ordinary differential equation (ODE) system to data is nonlinear and multimodal, which is of great challenge to gradient-based optimizers. Markov Chain Monte Carlo (MCMC) techniques provide an alternative approach to solving these problems and can escape local minima by design. APT-MCMC was created to allow users to setup ODE simulations in Python and run as compiled C++ code. It combines affine-invariant ensemble of samplers and parallel tempering MCMC techniques to improve the simulation efficiency. Simulations use Bayesian inference to provide probability distributions of parameters, which enable analysis of multiple minima and parameter correlation. Benchmark tests result in a 20×-60× speedup but 14% increase in memory usage against emcee, a similar MCMC package in Python. Several MCMC hyperparameters were analyzed: number of temperatures, ensemble size, step size, and swap attempt frequency. Heuristic tuning guidelines are provided for setting these hyperparameters.
RESUMEN
Airway surface liquid hyperabsorption and mucus accumulation are key elements of cystic fibrosis lung disease that can be assessed in vivo using functional imaging methods. In this study we evaluated experimental factors affecting measurements of mucociliary clearance (MCC) and small-molecule absorption (ABS) and patient factors associated with abnormal absorption and mucus clearance.Our imaging technique utilises two radiopharmaceutical probes delivered by inhalation. Measurement repeatability was assessed in 10 adult cystic fibrosis subjects. Experimental factors were assessed in 29 adult and paediatric cystic fibrosis subjects (51 scans). Patient factors were assessed in a subgroup with optimal aerosol deposition (37 scans; 24 subjects). Paediatric subjects (n=9) underwent initial and 2-year follow-up scans. Control subjects from a previously reported study are included for comparison.High rates of central aerosol deposition influenced measurements of ABS and, to a lesser extent, MCC. Depressed MCC in cystic fibrosis was only detectable in subjects with previous Pseudomonas aeruginosa infection. Cystic fibrosis subjects without P. aeruginosa had similar MCC to control subjects. Cystic fibrosis subjects had consistently higher ABS rates.We conclude that the primary experimental factor affecting MCC/ABS measurements is central deposition percentage. Depressed MCC in cystic fibrosis is associated with P. aeruginosa infection. ABS is consistently increased in cystic fibrosis.
Asunto(s)
Fibrosis Quística/microbiología , Depuración Mucociliar , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa , Administración por Inhalación , Adulto , Aerosoles , Fibrosis Quística/complicaciones , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Moco/microbiología , Infecciones por Pseudomonas/complicaciones , Cintigrafía , Radiofármacos/administración & dosificación , Sistema Respiratorio/fisiopatología , Adulto JovenRESUMEN
OBJECTIVES: Sepsis therapies have proven to be elusive because of the difficulty of translating biologically sound and effective interventions in animal models to humans. A part of this problem originates from the fact that septic patients present at various times after the onset of sepsis, whereas the exact time of infection is controlled in animal models. We sought to determine whether data mining longitudinal physiologic data in a nonhuman primate model of Escherichia coli-induced sepsis could help inform the time of onset of infection. DESIGN: A nearest-neighbor approach was used to back cast the time of onset of infection in animal models of sepsis. Animal data were censored to simulate prospective monitoring at any moment along the septic infection. This was compared against an uncensored database to find the most similar animal in order to estimate the infection onset time. Leave-one-out cross-validation was used for validation. Biomarker selection was performed based on the criteria of estimation accuracy and/or ease of measurement. SETTING: Computational experimental on existing experimental data. SUBJECTS: Retrospective data from 33 septic baboons (Papio ursinus) subjected to Escherichia coli infusion. Validation was performed using 14 pigs that were subjected to surgically induced fecal peritonitis and 22 pigs that were subjected to lipopolysaccharide infusion. MEASUREMENTS AND MAIN RESULTS: Longitudinal physiologic and serum markers, time of death. The presence of uniquely changing biomarkers during septic infection enabled the estimation of infection onset time in the datasets. Various combinations of temporal biomarkers, such as WBC, oxygen content, mean arterial pressure, and heart rate, yielded estimation accuracies of up to 97.8%. The use of temporal vital signs and a single measurement of serum biomarkers yielded highly accurate estimates without the need for invasive measurements. Validation in the pig data revealed similar results despite the heterogeneity of multiple experimental cohorts. This suggests that the method may be effective if sufficiently similar subjects are present in the database. CONCLUSIONS: One nearest-neighbor analysis showed promise in accurately identifying the onset of infection given a database of known infection times and of sufficient breadth. We suggest that this approach is ready for evaluation within the clinical setting using human data.
Asunto(s)
Algoritmos , Minería de Datos , Infecciones por Escherichia coli/complicaciones , Sepsis/fisiopatología , Animales , Presión Arterial , Biomarcadores/sangre , Biología Computacional , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Recuento de Leucocitos , Oxígeno/sangre , Papio , Reconocimiento de Normas Patrones Automatizadas , Estudios Retrospectivos , Sepsis/microbiología , Porcinos , Factores de TiempoRESUMEN
New measures are needed to rapidly assess emerging treatments for cystic fibrosis (CF) lung disease. Using an imaging approach, we evaluated the absorptive clearance of the radiolabeled small molecule probe diethylene triamine penta-acetic acid (DTPA) as an in vivo indicator of changes in airway liquid absorption. DTPA absorption and mucociliary clearance rates were measured in 21 patients with CF (12 adults and nine children) and nine adult controls using nuclear imaging. The effect of hypertonic saline on DTPA absorption was also studied. In addition, in vitro studies were conducted to identify the determinants of transepithelial DTPA absorption. CF patients had significantly increased rates of DTPA absorption compared with control subjects but had similar mucociliary clearance rates. Treatment with hypertonic saline resulted in a decrease in DTPA absorption and an increase in mucociliary clearance in 11 out of 11 adult CF patients compared with treatment with isotonic saline. In vitro studies revealed that â¼ 50% of DTPA absorption can be attributed to transepithelial fluid transport. Apically applied mucus impedes liquid and DTPA absorption. However, mucus effects become negligible in the presence of an osmotic stimulus. Functional imaging of DTPA absorption provides a quantifiable marker of immediate response to treatments that promote airway surface liquid hydration.
Asunto(s)
Fibrosis Quística/diagnóstico por imagen , Adulto , Aerosoles , Estudios de Casos y Controles , Células Cultivadas , Niño , Fibrosis Quística/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Mutación , Ósmosis , Ácido Pentético/química , Cintigrafía , Radiofármacos , Espirometría , Azufre Coloidal Tecnecio Tc 99m/química , Resultado del Tratamiento , Adulto JovenRESUMEN
INTRODUCTION: Prior work suggests that leukocyte trafficking is determined by local chemokine gradients between the nidus of infection and the plasma. We recently demonstrated that therapeutic apheresis can alter immune mediator concentrations in the plasma, protect against organ injury, and improve survival. Here we aimed to determine whether the removal of chemokines from the plasma by apheresis in experimental peritonitis changes chemokine gradients and subsequently enhances leukocyte localization into the infected compartment, and away from healthy tissues. METHODS: In total, 76 male adult Sprague-Dawley rats weighing 400 g to 600 g were included in this study. Eighteen hours after inducing sepsis by cecal ligation and puncture, we randomized these rats to apheresis or sham treatment for 4 hours. Cytokines, chemokines, and leukocyte counts from blood, peritoneal cavity, and lung were measured. In a separate experiment, we labeled neutrophils from septic donor animals and injected them into either apheresis or sham-treated animals. All numeric data with normal distributions were compared with one-way analysis of variance, and numeric data not normally distributed were compared with the Mann-Whitney U test. RESULTS: Apheresis significantly removed plasma cytokines and chemokines, increased peritoneal fluid-to-blood chemokine (C-X-C motif ligand 1, ligand 2, and C-C motif ligand 2) ratios, and decreased bronchoalveolar lavage fluid-to-blood chemokine ratios, resulting in enhanced leukocyte recruitment into the peritoneal cavity and improved bacterial clearance, but decreased recruitment into the lung. Apheresis also reduced myeloperoxidase activity and histologic injury in the lung, liver, and kidney. These Labeled donor neutrophils exhibited decreased localization in the lung when infused into apheresis-treated animals. CONCLUSIONS: Our results support the concept of chemokine gradient control of leukocyte trafficking and demonstrate the efficacy of apheresis to target this mechanism and reduce leukocyte infiltration into the lung.
Asunto(s)
Eliminación de Componentes Sanguíneos/métodos , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Leucocitos/metabolismo , Sepsis/metabolismo , Animales , Quimiocinas/sangre , Masculino , Cavidad Peritoneal/fisiología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sepsis/sangre , Distribución Tisular/fisiologíaRESUMEN
Background/Objectives: Microparticle-based drug delivery systems offer several advantages for protein-based drug formulations, enhancing patient compliance and therapeutic efficiency through the sustained delivery of the active pharmaceutical ingredient. Over the past few decades, the microfluidics method has emerged as a continuous manufacturing process for preparing drug-encapsulating microparticles, mainly for small molecule drugs. However, comparative assessments for the conventional batch method vs. the microfluidics method for protein-based drug formulations have been lacking. The main objective of this study was to generate immunomodulatory protein drug-loaded injectable formulations using both conventional batch and microfluidics methods. METHODS: Therefore, rhCCL22-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles were prepared by conventional homogenization and microfluidics methods. RESULTS: The resulting microparticles were analyzed comparatively, focusing on critical quality attributes such as microparticle size, size distribution, morphology, drug encapsulation efficiency, release kinetics, and batch-to-batch variations in relation to the manufacturing method. Our results demonstrated that the conventional method resulted in microparticles with denser surface porosity and wider size distribution as opposed to microparticles prepared by the microfluidics method, which could contribute to a significant difference in the drug-release kinetics. Additionally, our findings indicated minimal variation within batches for the microparticles prepared by the microfluidics method. CONCLUSION: Overall, this study highlights the comparative assessment of several critical quality attributes and batch variations associated with the manufacturing methods of protein-loaded microparticles which is crucial for ensuring consistency in efficacy, regulatory compliance, and quality control in the drug formulation manufacturing process.
RESUMEN
Vitamin E is a family of naturally occurring and structurally related lipophilic antioxidants, one of which, α-tocopherol (α-TOH), selectively accumulates in vertebrate tissues. The ω-hydroxylase cytochrome P450-4F2 (CYP4F2) is the only human enzyme shown to metabolize vitamin E. Using cDNA cloning, cell culture expression, and activity assays, we identified Cyp4f14 as a functional murine ortholog of CYP4F2. We then investigated the effect of Cyp4f14 deletion on vitamin E metabolism and status in vivo. Cyp4f14-null mice exhibited substrate-specific reductions in liver microsomal vitamin E-ω-hydroxylase activity ranging from 93% (γ-TOH) to 48% (γ-tocotrienol). In vivo data obtained from metabolic cage studies showed whole-body reductions in metabolism of γ-TOH of 90% and of 68% for δ- and α-TOH. This metabolic deficit in Cyp4f14(-/-) mice was partially offset by increased fecal excretion of nonmetabolized tocopherols and of novel ω-1- and ω-2-hydroxytocopherols. 12'-OH-γ-TOH represented 41% of whole-body production of γ-TOH metabolites in Cyp4f14(-/-) mice fed a soybean oil diet. Despite these counterbalancing mechanisms, Cyp4f14-null mice fed this diet for 6 weeks hyper-accumulated γ-TOH (2-fold increase over wild-type littermates) in all tissues and appeared normal. We conclude that CYP4F14 is the major but not the only vitamin E-ω-hydroxylase in mice. Its disruption significantly impairs whole-body vitamin E metabolism and alters the widely conserved phenotype of preferential tissue deposition of α-TOH. This model animal and its derivatives will be valuable in determining the biological actions of specific tocopherols and tocotrienols in vivo.
Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Oxigenasas de Función Mixta/genética , Tocoferoles/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 4 del Citocromo P450 , Heces/química , Femenino , Expresión Génica , Técnicas de Inactivación de Genes , Recombinación Homóloga , Hidroxilación , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microsomas Hepáticos/enzimología , Tocoferoles/química , Tocoferoles/orinaRESUMEN
The aim of this study was to characterize the pathways of basolateral secretion of common dietary tocopherols from polarized Caco-2 monolayers, a model of intestinal absorption. Given differences in structure and physical properties, we hypothesized that secretion may differ between different forms of vitamin E, thus potentially contribute to the selectivity seen in vivo. Monolayers were incubated apically and simultaneously with 10 µmol/L α-, γ-, and δ-tocopherol (1:1:1) in lipid micelles. Treatment with the microsomal triglyceride transfer protein inhibitor BMS201038 revealed that the triglyceride-rich particle secretory pathway (apolipoprotein B-dependent pathway) accounted for ~ 80% of total tocopherol secretion, without selectivity among the three forms of vitamin E. Apolipoprotein B-independent secretion of tocopherols (and cholesterol) was greatly enhanced by the liver X receptor agonist T0901317. T0901317 induced ATP-binding cassette transporter A1 (ABCA1) protein expression and basolateral secretion of tocopherols to apolipoprotein A1. ABCA1-dependent secretion demonstrated vitamer selectivity such that efficiency of secretion of α- and γ-tocopherols exceeded that of δ-tocopherol. Basal addition of HDL stimulated vitamin E secretion but without selectivity among the three forms, whereas LDL had no effect. Basal addition of scavenger receptor class B member I (SR-BI) blocking antibody, which inhibits the interaction between SR-BI and HDL, increased basal accumulation of all tocopherols, demonstrating a role for SR-BI in cellular re-uptake of secreted vitamin E. These findings demonstrated that vitamin E and cholesterol utilize common pathways of secretion and that secretion via the ABCA1 pathway favors certain forms of vitamin E.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Mucosa Intestinal/metabolismo , Lipoproteínas HDL/metabolismo , Tocoferoles/metabolismo , Vitamina E/metabolismo , Anticolesterolemiantes/farmacología , Bencimidazoles/farmacología , Células CACO-2 , Proteínas Portadoras/metabolismo , Humanos , Hidrocarburos Fluorados/farmacología , Absorción Intestinal , Receptores X del Hígado , Micelas , Modelos Biológicos , Receptores Nucleares Huérfanos/metabolismo , Receptores Depuradores de Clase B/metabolismo , Sulfonamidas/farmacologíaRESUMEN
The widely conserved preferential accumulation of α-tocopherol (α-TOH) in tissues occurs, in part, from selective postabsorptive catabolism of non-α-TOH forms via the vitamin E-ω-oxidation pathway. We previously showed that global disruption of CYP4F14, the major but not the only mouse TOH-ω-hydroxylase, resulted in hyper-accumulation of γ-TOH in mice fed a soybean oil diet. In the current study, supplementation of Cyp4f14(-/-) mice with high levels of δ- and γ-TOH exacerbated tissue enrichment of these forms of vitamin E. However, at high dietary levels of TOH, mechanisms other than ω-hydroxylation dominate in resisting diet-induced accumulation of non-α-TOH. These include TOH metabolism via ω-1/ω-2 oxidation and fecal elimination of unmetabolized TOH. The ω-1 and ω-2 fecal metabolites of γ- and α-TOH were observed in human fecal material. Mice lacking all liver microsomal CYP activity due to disruption of cytochrome P450 reductase revealed the presence of extra-hepatic ω-, ω-1, and ω-2 TOH hydroxylase activities. TOH-ω-hydroxylase activity was exhibited by microsomes from mouse and human small intestine; murine activity was entirely due to CYP4F14. These findings shed new light on the role of TOH-ω-hydroxylase activity and other mechanisms in resisting diet-induced accumulation of tissue TOH and further characterize vitamin E metabolism in mice and humans.
Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Suplementos Dietéticos , Hígado/química , Vitamina E/administración & dosificación , Vitamina E/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/deficiencia , Familia 4 del Citocromo P450 , Hígado/enzimología , Hígado/metabolismo , Ratones , Ratones NoqueadosRESUMEN
Recombinant adeno-associated virus serotype 9 (rAAV9) vectors show robust in vivo transduction by a systemic approach. It has been proposed that rAAV9 has enhanced ability to cross the vascular endothelial barriers. However, the scientific basis of systemic administration of rAAV9 and its transduction mechanisms have not been fully established. Here, we show indirect evidence suggesting that capillary walls still remain as a significant barrier to rAAV9 in cardiac transduction but not so in hepatic transduction in mice, and the distinctively delayed blood clearance of rAAV9 plays an important role in overcoming this barrier, contributing to robust cardiac transduction. We find that transvascular transport of rAAV9 in the heart is a capacity-limited slow process and occurs in the absence of caveolin-1, the major component of caveolae that mediate endothelial transcytosis. In addition, a reverse genetic study identifies the outer region of the icosahedral threefold capsid protrusions as a potential culprit for rAAV9's delayed blood clearance. These results support a model in which the delayed blood clearance of rAAV9 sustains the capacity-limited slow transvascular vector transport and plays a role in mediating robust cardiac transduction, and provide important implications in AAV capsid engineering to create new rAAV variants with more desirable properties.
Asunto(s)
Dependovirus/genética , Miocardio/metabolismo , Transducción Genética/métodos , Animales , Caveolina 1/genética , Línea Celular , Vectores Genéticos/sangre , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Introduction: Targeted therapies for sepsis have failed to show benefit due to high variability among subjects. We sought to demonstrate different phenotypes of septic shock based solely on clinical features and show that these relate to outcome. Methods: A retrospective analysis was performed of a 1,023-subject cohort with early septic shock from the ProCESS trial. Twenty-three clinical variables at baseline were analyzed using hierarchical clustering, with consensus clustering used to identify and validate the ideal number of clusters in a derivation cohort of 642 subjects from 20 hospitals. Clusters were visualized using heatmaps over 0, 6, 24, and 72 h. Clinical outcomes were 14-day all-cause mortality and organ failure pattern. Cluster robustness was confirmed in a validation cohort of 381 subjects from 11 hospitals. Results: Five phenotypes were identified, each with unique organ failure patterns that persisted in time. By enrollment criteria, all patients had shock. The two high-risk phenotypes were characterized by distinct multi-organ failure patterns and cytokine signatures, with the highest mortality group characterized most notably by liver dysfunction and coagulopathy while the other group exhibited primarily respiratory failure, neurologic dysfunction, and renal dysfunction. The moderate risk phenotype was that of respiratory failure, while low-risk phenotypes did not have a high degree of additional organ failure. Conclusions: Sepsis phenotypes with distinct biochemical abnormalities may be identified by clinical characteristics alone and likely provide an opportunity for early clinical actionability and prognosis.
RESUMEN
BACKGROUND: Vitamin E (vitE) is hypothesized to attenuate age-related decline in pulmonary function. OBJECTIVES: We investigated the association between change in plasma vitE (∆vitE) and pulmonary function decline [forced expiratory volume in the first second (FEV1)] and examined genetic and nongenetic factors associated with ∆vitE. METHODS: We studied 1144 men randomly assigned to vitE in SELECT (Selenium and Vitamin E Cancer Prevention Trial). ∆vitE was the difference between baseline and year 3 vitE concentrations measured with GC-MS. FEV1 was measured longitudinally by spirometry. We genotyped 555 men (vitE-only arm) using the Illumina Expanded Multi-Ethnic Genotyping Array (MEGAex). We used mixed-effects linear regression modeling to examine the ∆vitE-FEV1 association. RESULTS: Higher ∆vitE was associated with lower baseline α-tocopherol (α-TOH), higher baseline γ-tocopherol, higher baseline free cholesterol, European ancestry (as opposed to African) (all P < 0.05), and the minor allele of a missense variant in cytochrome P450 family 4 subfamily F member 2 (CYP4F2) (rs2108622-T; 2.4 µmol/L higher ∆vitE, SE: 0.8 µmol/L; P = 0.0032). Higher ∆vitE was associated with attenuated FEV1 decline, with stronger effects in adherent participants (≥80% of supplements consumed): a statistically significant ∆vitE × time interaction (P = 0.014) indicated that a 1-unit increase in ∆vitE was associated with a 2.2-mL/y attenuation in FEV1 decline (SE: 0.9 mL/y). The effect size for 1 SD higher ∆vitE (+4 µmol/mmol free-cholesterol-adjusted α-TOH) was roughly one-quarter of the effect of 1 y of aging, but in the opposite direction. The ∆vitE-FEV1 association was similar in never smokers (2.4-mL/y attenuated FEV1 decline, SE: 1.0 mL/y; P = 0.017, n = 364), and current smokers (2.8-mL/y, SE: 1.6 mL/y; P = 0.079, n = 214), but there was little to no effect in former smokers (-0.64-mL/y, SE: 0.9 mL/y; P = 0.45, n = 564). CONCLUSIONS: Greater response to vitE supplementation was associated with attenuated FEV1 decline. The response to supplementation differed by rs2108622 such that individuals with the C allele, compared with the T allele, may need a higher dietary intake to reach the same plasma vitE concentration.
Asunto(s)
Pulmón , alfa-Tocoferol , Familia 4 del Citocromo P450 , Volumen Espiratorio Forzado , Humanos , Masculino , Espirometría , Vitamina ERESUMEN
Background: Human nasal epithelial (HNE) cells can be sampled noninvasively and cultured to provide a model of the airway epithelium that reflects cystic fibrosis (CF) pathophysiology. We hypothesised that in vitro measures of HNE cell physiology would correlate directly with in vivo measures of lung physiology and therapeutic response, providing a framework for using HNE cells for therapeutic development and precision medicine. Methods: We sampled nasal cells from participants with CF (CF group, n=26), healthy controls (HC group, n=14) and single CF transmembrane conductance regulator (CFTR) mutation carrier parents of the CF group (CR group, n=16). Participants underwent lung physiology and sweat chloride testing, and nuclear imaging-based measurement of mucociliary clearance (MCC) and small-molecule absorption (ABS). CF participants completed a second imaging day that included hypertonic saline (HS) inhalation to assess therapeutic response in terms of MCC. HNE measurements included Ussing chamber electrophysiology, small-molecule and liquid absorption rates, and particle diffusion rates through the HNE airway surface liquid (ASL) measured using fluorescence recovery after photobleaching (FRAP). Results: Long FRAP diffusion times were associated with increased MCC response to HS in CF. This implies a strong relationship between inherent factors affecting ASL mucin concentration and therapeutic response to a hydrating therapy. MCC decreased with age in the CR group, which had a larger range of ages than the other two groups. Likely this indicates a general age-related effect that may be accentuated in this group. Measures of lung ABS correlated with sweat chloride in both the HC and CF groups, indicating that CFTR function drives this measure of paracellular small-molecule probe absorption. Conclusions: Our results demonstrate the utility of HNE cultures for assessing therapeutic response for hydrating therapies. In vitro measurements of FRAP were particularly useful for predicting response and for characterising important properties of ASL mucus that were ultimately reflected in lung physiology.
RESUMEN
Human cytochrome P450 4F2 (CYP4F2) catalyzes the ω-hydroxylation of the side chain of tocopherols (TOH) and tocotrienols (T3), the first step in their catabolism to polar metabolites excreted in urine. CYP4F2, in conjunction with α-TOH transfer protein, results in the conserved phenotype of selective retention of α-TOH. The purpose of this work was to determine the functional consequences of 2 common genetic variants in the human CYP4F2 gene on vitamin E-ω-hydroxylase specific activity using the 6 major dietary TOH and T3 as substrate. CYP4F2-mediated ω-hydroxylase specific activity was measured in microsomal preparations from insect cells that express wild-type or polymorphic variants of the human CYP4F2 protein. The W12G variant exhibited a greater enzyme specific activity (pmol product · min(-1) · pmol CYP4F2(-1)) compared with wild-type enzyme for both TOH and T3, 230-275% of wild-type toward α, γ, and δ-TOH and 350% of wild-type toward α, γ, and δ-T3. In contrast, the V433M variant had lower enzyme specific activity toward TOH (42-66% of wild type) but was without a significant effect on the metabolism of T3. Because CYP4F2 is the only enzyme currently shown to metabolize vitamin E in humans, the observed substrate-dependent alterations in enzyme activity associated with these genetic variants may result in alterations in vitamin E status in individuals carrying these mutations and constitute a source of variability in vitamin E status.
Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Polimorfismo de Nucleótido Simple , Vitamina E/metabolismo , Ácido Araquidónico/química , Ácido Araquidónico/metabolismo , Familia 4 del Citocromo P450 , Cromatografía de Gases y Espectrometría de Masas , Estudios de Asociación Genética , Humanos , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hidroxilación , Cinética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tocoferoles/química , Tocoferoles/metabolismo , Tocotrienoles/química , Tocotrienoles/metabolismo , Vitamina E/química , alfa-TocoferolRESUMEN
BACKGROUND: Modeling approaches offer a novel way to detect and predict coagulopathy in trauma patients. A dynamic model, built and tested on thromboelastogram (TEG) data, was used to generate a virtual library of over 160,000 simulated RapidTEGs. The patient-specific parameters are the initial platelet count, platelet activation rate, thrombus growth rate, and lysis rate (P(0), k1, k2, and k3, respectively). METHODS: Patient data from both STAAMP (n = 182 patients) and PAMPer (n = 111 patients) clinical trials were collected. A total of 873 RapidTEGs were analyzed. One hundred sixteen TEGs indicated maximum amplitude (MA) below normal and 466 TEGs indicated lysis percent above normal. Each patient's TEG response was compared against the virtual library of TEGs to determine library trajectories having the least sum-of-squared error versus the patient TEG up to each specified evaluation time ∈ (3, 4, 5, 7.5, 10, 15, 20 minutes). Using 10 nearest-neighbor trajectories, a logistic regression was performed to predict if the patient TEG indicated MA below normal (<50 mm), lysis percent 30 minutes after MA (LY30) greater than 3%, and/or blood transfusion need using the parameters from the dynamic model. RESULTS: The algorithm predicts abnormal MA values using the initial 3 minutes of RapidTEG data with a median area under the curve of 0.95, and improves with more data to 0.98 by 10 minutes. Prediction of future platelet and packed red blood cell transfusion based on parameters at 4 and 5 minutes, respectively, provides equivalent predictions to the traditional TEG parameters in significantly less time. Dynamic model parameters could not predict abnormal LY30 or future fresh-frozen plasma transfusion. CONCLUSION: This analysis could be incorporated into TEG software and workflow to quickly estimate if the MA would be below or above threshold value within the initial minutes following a TEG, along with an estimate of what blood products to have on hand. LEVEL OF EVIDENCE: Therapeutic/Care Management: Level IV.
Asunto(s)
Trastornos de la Coagulación Sanguínea/diagnóstico , Transfusión de Componentes Sanguíneos/estadística & datos numéricos , Modelos Cardiovasculares , Tromboelastografía/estadística & datos numéricos , Heridas y Lesiones/complicaciones , Adulto , Algoritmos , Trastornos de la Coagulación Sanguínea/sangre , Trastornos de la Coagulación Sanguínea/terapia , Ensayos Clínicos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Activación Plaquetaria , Recuento de Plaquetas , Sistemas de Atención de Punto/estadística & datos numéricos , Pronóstico , Tromboelastografía/instrumentación , Factores de Tiempo , Heridas y Lesiones/sangre , Heridas y Lesiones/terapia , Adulto JovenRESUMEN
Cytidine analogues such as cytosine arabinoside, gemcitabine, decitabine, 5-azacytidine, 5-fluoro-2'-deoxycytidine and 5-chloro-2'-deoxycytidine undergo rapid catabolism by cytidine deaminase (CD). 3,4,5,6-tetrahydrouridine (THU) is a potent CD inhibitor that has been applied preclinically and clinically as a modulator of cytidine analogue metabolism. However, THU pharmacokinetics has not been fully characterized, which has impaired the optimal preclinical evaluation and clinical use of THU. Therefore, we characterized the THU pharmacokinetics and bioavailability in mice. Mice were dosed with THU iv (100 mg/kg) or po (30, 100, or 300 mg/kg). Plasma and urine THU concentrations were quantitated with a validated LC-MS/MS assay. Plasma pharmacokinetic parameters were calculated compartmentally and non-compartmentally. THU, at 100 mg/kg iv had a 73 min terminal half-life and produced plasma THU concentrations >1 microg/ml, the concentration shown to effectively block deamination, for 4 h. Clearance was 9.1 ml/min/kg, and the distribution volume was 0.95 l/kg. Renal excretion accounted for 36-55% of the THU dose. A three-compartment model fit the iv THU data best. THU, at 100 mg/kg po, produced a concentration versus time profile with a plateau of approximately 10 mug/ml from 0.5-3 h, followed by a decline with an 85 min half-life. The oral bioavailability of THU was approximately 20%. The 20% oral bioavailability of THU is sufficient to produce and sustain, for several hours, plasma concentrations that inhibit CD. This suggests the feasibility of using THU to decrease elimination and first-pass metabolism of cytidine analogues by CD. THU pharmacokinetics are now being evaluated in humans.