RESUMEN
Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. Changes in the amount, metabolism, and function of pulmonary surfactant, the substance that regulates alveolar interfacial surface tension and modulates lung compliance and elastance, have been reported in MPS IIIA mice. Here we investigated changes in lung function in 20-wk-old control and MPS IIIA mice with a closed and open thoracic cage, diaphragm contractile properties, and potential parenchymal remodeling. MPS IIIA mice had increased compliance and airway resistance and reduced tissue damping and elastance compared with control mice. The chest wall impacted lung function as observed by an increase in airway resistance and a decrease in peripheral energy dissipation in the open compared with the closed thoracic cage state in MPS IIIA mice. Diaphragm contractile forces showed a decrease in peak twitch force, maximum specific force, and the force-frequency relationship but no change in muscle fiber cross-sectional area in MPS IIIA mice compared with control mice. Design-based stereology did not reveal any parenchymal remodeling or destruction of alveolar septa in the MPS IIIA mouse lung. In conclusion, the increased storage of HS which leads to biochemical and biophysical changes in pulmonary surfactant also affects lung and diaphragm function, but has no impact on lung or diaphragm structure at this stage of the disease.NEW & NOTEWORTHY Heparan sulfate storage in the lungs of mucopolysaccharidosis type IIIA (MPS IIIA) mice leads to changes in lung function consistent with those of an obstructive lung disease and includes an increase in lung compliance and airway resistance and a decrease in tissue elastance. In addition, diaphragm muscle contractile strength is reduced, potentially further contributing to lung function impairment. However, no changes in parenchymal lung structure were observed in mice at 20 wk of age.
Asunto(s)
Resistencia de las Vías Respiratorias , Diafragma , Mucopolisacaridosis III , Alveolos Pulmonares , Animales , Diafragma/fisiopatología , Diafragma/patología , Diafragma/metabolismo , Rendimiento Pulmonar , Ratones , Alveolos Pulmonares/patología , Alveolos Pulmonares/fisiopatología , Alveolos Pulmonares/metabolismo , Mucopolisacaridosis III/patología , Mucopolisacaridosis III/fisiopatología , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/genética , Contracción Muscular/fisiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Fuerza Muscular , Pulmón/patología , Pulmón/fisiopatología , Pulmón/metabolismo , MasculinoRESUMEN
RATIONALE: The application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to murine lungs is challenging due to the spongy nature of the tissue. Lungs consist of interconnected air sacs (alveoli) lined by a single layer of flattened epithelial cells, which requires inflation to maintain its natural structure. Therefore, a protocol that is compatible with both lung instillation and high spatial resolution is essential to enable multi-omic studies on murine lung disease models using MALDI-MSI. METHODS AND RESULTS: To maintain the structural integrity of the tissue, murine lungs were inflated with 8% (w/v) gelatin for lipid MSI of fresh frozen tissues or 4% (v/v) paraformaldehyde neutral buffer for N-glycan and peptide MSI of FFPE tissues. Tissues were sectioned and prepared for enzymatic digestion and/or matrix deposition. Glycerol-free PNGase F was applied for N-glycan MSI, while Trypsin Gold was applied for peptide MSI using the iMatrixSpray and ImagePrep Station, respectively. For lipid, N-glycan and peptide MSI, α-cyano-4-hydroxycinnamic acid matrix was deposited using the iMatrixSpray. MS data were acquired with 20 µm spatial resolution using a timsTOF fleX MS instrument followed by MS fragmentation of lipids, N-glycans and peptides. For lipid MSI, trapped ion mobility spectrometry was used to separate isomeric/isobaric lipid species. SCiLS™ Lab was used to visualize all MSI data. For analyte identification, MetaboScape®, GlycoMod and Mascot were used to annotate MS fragmentation spectra of lipids, N-glycans and tryptic peptides, respectively. CONCLUSIONS: Our protocol provides instructions on sample preparation for high spatial resolution MALDI-MSI, MS/MS data acquisition and lipid, N-glycan and peptide annotation and identification from murine lungs. This protocol will allow non-biased analyses of diseased lungs from preclinical murine models and provide further insight into disease models.
Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Animales , Ratones , Péptidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Polisacáridos/análisis , Pulmón/química , LípidosRESUMEN
Re(I) complexes have potential in biomedical sciences as imaging agents, diagnostics and therapeutics. Thus, it is crucial to understand how Re(I) complexes interact with carrier proteins, like serum albumins. Here, two neutral Re(I) complexes were used (fac-[Re(CO)3 (1,10-phenanthroline)L], in which L is either 4-cyanophenyltetrazolate (1) or 4-methoxycarbonylphenyltetrazole ester (2), to study the interactions with bovine serum albumin (BSA). Spectroscopic measurements, calculations of thermodynamic and Förster resonance energy transfer parameters, as well as molecular modelling, were performed to study differential binding between BSA and complex 1 and 2. Induced-fit docking combined with quantum-polarised ligand docking were employed in what is believed to be a first for a Re(I) complex as a ligand for BSA. Our findings provide a basis for other molecular interaction studies and suggest that subtle functional group alterations at the terminal region of the Re(I) complex have a significant impact on the ability of this class of compounds to interact with BSA.
Asunto(s)
Albúmina Sérica Bovina , Sitios de Unión , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Bovina/metabolismo , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , TermodinámicaRESUMEN
Syntenin-1 is an essential multi-functional adaptor protein, which has multiple roles in membrane trafficking and exosome biogenesis, as well as scaffolding interactions with either the actin cytoskeleton or focal adhesions. However, how this functional multiplicity relates to syntenin-1 distribution in different endosome compartments or other intracellular locations and its underlying involvement in cancer pathogenesis have yet to be fully defined. To help facilitate the investigation of syntenin-1 biology, we developed two specific monoclonal antibodies (Synt-2C6 and Synt-3A11) to spatially distinct linear sequence epitopes on syntenin-1, which were each designed to be unique at the six-amino acid level. These antibodies produced very different intracellular staining patterns, with Synt-2C6 detecting endosomes and Synt-3A11 producing a fibrillar staining pattern suggesting a cytoskeletal localisation. Treatment of cells with Nocodazole altered the intracellular localisation of Synt-3A11, which was consistent with the syntenin-1 protein interacting with microtubules. In prostate tissue biopsies, Synt-3A11 defined atrophy and early-stage prostate cancer, whereas Synt-2C6 only showed minimal interaction with atrophic tissue. This highlights a critical need for site-specific antibodies and a knowledge of their reactivity to define differential protein distributions, interactions and functions, which may differ between normal and malignant cells.
Asunto(s)
Anticuerpos Monoclonales/análisis , Neoplasias de la Próstata/patología , Sinteninas/análisis , Animales , Línea Celular , Línea Celular Tumoral , Mapeo Epitopo/métodos , Epítopos , Humanos , Inmunoquímica/métodos , Masculino , Modelos Moleculares , Neoplasias de la Próstata/diagnósticoRESUMEN
Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.
Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos , Línea Celular Transformada , Codón sin Sentido , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Datos de Secuencia Molecular , Linaje , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , SíndromeRESUMEN
BACKGROUND: Prostate cancer cell lines have been used in the search for biomarkers that are suitable for prostate cancer diagnosis. Unfortunately, many cell line studies have only involved single cell lines, partially characterized cell lines or were performed without controls, and this may have been detrimental to effective biomarker discovery. We have analyzed a panel of prostate cancer and nonmalignant control cell lines using current biomarkers and then investigated a set of prospective endosomal and lysosomal proteins to search for new biomarkers. METHODS: Western blotting was used to define the amount of protein and specific molecular forms in cell extracts and culture media from a panel of nonmalignant (RWPE-1, PNT1a, PNT2) and prostate cancer (22RV1, CaHPV10, DU-145, LNCaP) cell lines. Gene expression was determined by qRT-PCR. RESULTS: HPV-18 transfected cell lines displayed a different pattern of protein and gene expression when compared to the other cell lines examined, suggesting that these cell lines may not be the most optimal for prostate cancer biomarker discovery. There was an increased amount of prostatic acid phosphatase and kallikrein proteins in LNCaP cell extracts and culture media, but variable amounts of these proteins in other prostate cancer cell lines. There were minimal differences in the amounts of lysosomal proteins detected in prostate cancer cells and culture media, but two endosomal proteins, cathepsin B and acid ceramidase, had increased gene and protein expression, and certain molecular forms showed increased secretion from prostate cancer cells (P ≤ 0.05). LIMP-2 gene and protein expression was significantly increased in prostate cancer compared to nonmalignant cell lines (P ≤ 0.05). CONCLUSIONS: While the existing prostate cancer biomarkers and lysosomal proteins investigated here were not able to specifically differentiate between a panel of nonmalignant and prostate cancer cell lines, endosomal proteins showed some discriminatory capacity. LIMP-2 is a critical regulator of endosome biogenesis and the increased expression observed in prostate cancer cells indicated that other endosome related proteins may also be upregulated and could be investigated as novel biomarkers.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/diagnóstico , Fosfatasa Ácida , Biomarcadores de Tumor/genética , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismoRESUMEN
BACKGROUND: Sanfilippo syndrome (mucopolysaccharidosis type IIIA; MPS IIIA) is a childhood dementia caused by inherited mutations in the sulfamidase gene. At present, there is no treatment and children with classical disease generally die in their late teens. Intravenous or intra-cerebrospinal fluid (CSF) injection of AAV9-gene replacement is being examined in human clinical trials; evaluation of the impact on brain disease is an intense focus; however, MPS IIIA patients also experience profound, progressive photoreceptor loss, leading to night blindness. AIM: To compare the relative efficacy of the two therapeutic approaches on retinal degeneration in MPS IIIA mice. METHODS: Neonatal mice received i.v. or intra-CSF AAV9-sulfamidase or vehicle and after 20 weeks, biochemical and histological evaluation of neuroretina integrity was carried out. RESULTS: Both treatments improved central retinal thickness; however, in peripheral retina, outer nuclear layer thickness and photoreceptor cell length were only significantly improved by i.v. gene replacement. Further, normalization of endo-lysosomal compartment size and microglial morphology was only observed following intravenous gene delivery. CONCLUSIONS: Confirmatory studies are needed in adult mice; however, these data indicate that i.v. AAV9-sulfamidase infusion leads to superior outcomes in neuroretina, and cerebrospinal fluid-delivered AAV9 may need to be supplemented with another therapeutic approach for optimal patient quality of life.
Asunto(s)
Dependovirus , Terapia Genética , Mucopolisacaridosis III , Retina , Animales , Mucopolisacaridosis III/terapia , Mucopolisacaridosis III/genética , Terapia Genética/métodos , Dependovirus/genética , Retina/patología , Ratones , Modelos Animales de Enfermedad , Hidrolasas/genética , Animales Recién Nacidos , Ratones Endogámicos C57BL , Demencia/genética , Demencia/terapia , Vectores Genéticos/administración & dosificación , Inyecciones IntravenosasRESUMEN
Mucopolysaccharidosis (MPS) VI is due to a deficiency in the activity of N-acetylgalactosamine 4-sulfatase (4S), also known as arylsulfatase B. Previously, retroviral vector (RV)-mediated neonatal gene therapy reduced the clinical manifestations of MPS I and MPS VII in mice and dogs. However, sulfatases require post-translational modification by sulfatase-modifying factors. MPS VI cats were injected intravenously (i.v.) with a gamma RV-expressing feline 4S, resulting in 5 ± 3 copies of RV per 100 cells in liver. Liver and serum 4S activity were 1,450 ± 1,720 U/mg (26-fold normal) and 107 ± 60 U/ml (13-fold normal), respectively, and were directly proportional to the liver 4S protein levels for individual cats. This study suggests that sulfatase-modifying factor (SUMF) activity in liver was sufficient to result in active enzyme despite overexpression of 4S. RV-treated MPS VI cats achieved higher body weights and longer appendicular skeleton lengths, had reduced articular cartilage erosion, and reduced aortic valve thickening and aortic dilatation compared with untreated MPS VI cats, although cervical vertebral bone lengths were not improved. This demonstrates that therapeutic expression of a functional sulfatase protein can be achieved with neonatal gene therapy using a gamma RV, but some aspects of bone disease remain difficult to treat.
Asunto(s)
Enfermedades de los Gatos/terapia , Virus de la Leucemia Murina de Moloney/genética , Mucopolisacaridosis VI/veterinaria , N-Acetilgalactosamina-4-Sulfatasa/genética , Animales , Animales Recién Nacidos , Peso Corporal , Enfermedades de los Gatos/enzimología , Enfermedades de los Gatos/genética , Gatos , Femenino , Terapia Genética , Vectores Genéticos , Inyecciones Intravenosas , Masculino , Mucopolisacaridosis VI/enzimología , Mucopolisacaridosis VI/genética , Mucopolisacaridosis VI/terapia , N-Acetilgalactosamina-4-Sulfatasa/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
Diagnosis and assessment of patients with prostate cancer is dependent on accurate interpretation and grading of histopathology. However, morphology does not necessarily reflect the complex biological changes occurring in prostate cancer disease progression, and current biomarkers have demonstrated limited clinical utility in patient assessment. This study aimed to develop biomarkers that accurately define prostate cancer biology by distinguishing specific pathological features that enable reliable interpretation of pathology for accurate Gleason grading of patients. Online gene expression databases were interrogated and a pathogenic pathway for prostate cancer was identified. The protein expression of key genes in the pathway, including adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (Appl1), Sortilin and Syndecan-1, was examined by immunohistochemistry (IHC) in a pilot study of 29 patients with prostate cancer, using monoclonal antibodies designed against unique epitopes. Appl1, Sortilin, and Syndecan-1 expression was first assessed in a tissue microarray cohort of 112 patient samples, demonstrating that the monoclonal antibodies clearly illustrate gland morphologies. To determine the impact of a novel IHC-assisted interpretation (the utility of Appl1, Sortilin, and Syndecan-1 labelling as a panel) of Gleason grading, versus standard haematoxylin and eosin (H&E) Gleason grade assignment, a radical prostatectomy sample cohort comprising 114 patients was assessed. In comparison to H&E, the utility of the biomarker panel reduced subjectivity in interpretation of prostate cancer tissue morphology and improved the reliability of pathology assessment, resulting in Gleason grade redistribution for 41% of patient samples. Importantly, for equivocal IHC-assisted labelling and H&E staining results, the cancer morphology interpretation could be more accurately applied upon re-review of the H&E tissue sections. This study addresses a key issue in the field of prostate cancer pathology by presenting a novel combination of three biomarkers and has the potential to transform clinical pathology practice by standardising the interpretation of the tissue morphology.
Asunto(s)
Neoplasias de la Próstata , Sindecano-1 , Humanos , Masculino , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anticuerpos Monoclonales , Clasificación del Tumor , Proyectos Piloto , Neoplasias de la Próstata/metabolismo , Reproducibilidad de los Resultados , Sindecano-1/metabolismoRESUMEN
The discovery over five decades ago of the lysosome, as a degradative organelle and its dysfunction in lysosomal storage disorder patients, was both insightful and simple in concept. Here, we review some of the history and pathophysiology of lysosomal storage disorders to show how they have impacted on our knowledge of lysosomal biology. Although a significant amount of information has been accrued on the molecular genetics and biochemistry of lysosomal storage disorders, we still do not fully understand the mechanistic link between the storage material and disease pathogenesis. However, the accumulation of undegraded substrate(s) can disrupt other lysosomal degradation processes, vesicular traffic, and lysosomal biogenesis to evoke the diverse pathophysiology that is evident in this complex set of disorders.
Asunto(s)
Enfermedades por Almacenamiento Lisosomal/patología , Enfermedades por Almacenamiento Lisosomal/fisiopatología , Lisosomas/patología , Lisosomas/fisiología , HumanosRESUMEN
Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disease with significant neurological and skeletal pathologies. Respiratory dysfunction is a secondary pathology contributing to mortality in MPS IIIA patients. Pulmonary surfactant is crucial to optimal lung function and has not been investigated in MPS IIIA. We measured heparan sulphate (HS), lipids and surfactant proteins (SP) in pulmonary tissue and bronchoalveolar lavage fluid (BALF), and surfactant activity in healthy and diseased mice (20 weeks of age). Heparan sulphate, ganglioside GM3 and bis(monoacylglycero)phosphate (BMP) were increased in MPS IIIA lung tissue. There was an increase in HS and a decrease in BMP and cholesteryl esters (CE) in MPS IIIA BALF. Phospholipid composition remained unchanged, but BALF total phospholipids were reduced (49.70%) in MPS IIIA. There was a reduction in SP-A, -C and -D mRNA, SP-D protein in tissue and SP-A, -C and -D protein in BALF of MPS IIIA mice. Captive bubble surfactometry showed an increase in minimum and maximum surface tension and percent surface area compression, as well as a higher compressibility and hysteresis in MPS IIIA surfactant upon dynamic cycling. Collectively these biochemical and biophysical changes in alveolar surfactant are likely to be detrimental to lung function in MPS IIIA.
Asunto(s)
Heparitina Sulfato/metabolismo , Mucopolisacaridosis III/metabolismo , Alveolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Animales , Fenómenos Biofísicos , Líquido del Lavado Bronquioalveolar , Colesterol/metabolismo , Cromatografía Liquida , Gangliósido G(M3)/metabolismo , Regulación de la Expresión Génica , Lisofosfolípidos/metabolismo , Ratones Endogámicos C57BL , Monoglicéridos/metabolismo , Fosfolípidos/metabolismo , Estándares de Referencia , Espectrometría de Masas en TándemRESUMEN
The sorting of acid hydrolase precursors at the trans-Golgi network (TGN) is mediated by binding to mannose 6-phosphate receptors (MPRs) and subsequent capture of the hydrolase-MPR complexes into clathrin-coated vesicles or transport carriers (TCs) destined for delivery to endosomes. This capture depends on the function of three monomeric clathrin adaptors named GGAs. The GGAs comprise a C-terminal "ear" domain that binds a specific set of accessory proteins. Herein we show that one of these accessory proteins, p56, colocalizes and physically interacts with the three GGAs at the TGN. Moreover, overexpression of the GGAs enhances the association of p56 with the TGN, and RNA interference (RNAi)-mediated depletion of the GGAs decreases the TGN association and total levels of p56. RNAi-mediated depletion of p56 or the GGAs causes various degrees of missorting of the precursor of the acid hydrolase, cathepsin D. In the case of p56 depletion, this missorting correlates with decreased mobility of GGA-containing TCs. Transfection with an RNAi-resistant p56 construct, but not with a p56 construct lacking the GGA-ear-interacting motif, restores the mobility of the TCs. We conclude that p56 tightly cooperates with the GGAs in the sorting of cathepsin D to lysosomes, probably by enabling the movement of GGA-containing TCs.
Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Clatrina/metabolismo , Lisosomas/enzimología , Vesículas Transportadoras/metabolismo , Red trans-Golgi/metabolismo , Factores de Ribosilacion-ADP/deficiencia , Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Animales , Células COS , Catepsina D/metabolismo , Línea Celular Tumoral , Chlorocebus aethiops , Fibroblastos/citología , Fibroblastos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Ratas , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
Innate immunity is critical for host defence against pathogen and environmental challenge and this involves the production and secretion of immune mediators, such as antimicrobial peptides and pro-inflammatory cytokines. However, when dysregulated, innate immunity can contribute to multifactorial diseases, including inflammatory rheumatic disorders, type 2 diabetes, cancer, neurodegenerative and cardiovascular diseases and even septic shock. During an innate immune response, antimicrobial peptides and cytokines are trafficked via Rab11 multivesicular endosomes, and then sorted into Rab11 vesicles for traffic to the plasma membrane and secretion. In this study, a cyclin-dependent kinase inhibitor CDKI-73 was used to determine its effect on the innate immune response, based on previously identified targets for this compound. Our results showed that CDKI-73 inhibited the delivery of Rab11 vesicles to the plasma membrane, resulting in the accumulation of large multivesicular Rab11 endosomes near the cell periphery. In addition to the effect on endosome delivery, CDKI-73 down-regulated the amount of innate immune cargo, including the antimicrobial peptide Drosomycin and pro-inflammatory cytokines interleukin-6 (IL-6) and tumour necrosis factor alpha (TNFα). We concluded that CDKI-73 has the potential to regulate the delivery and secretion of certain innate immune cargo, which could be used to control inflammation.
Asunto(s)
Inmunidad Innata , Pirimidinas/farmacología , Sulfonamidas/farmacología , Proteínas de Unión al GTP rab/metabolismo , Animales , Citocinas/metabolismo , Drosophila/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fusión de Membrana/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Células THP-1RESUMEN
Dipeptidyl peptidase-4 inhibitors (DPP4i) are a class of orally available, small molecule inhibitors for the management of Type-II diabetes. A rapid, real-time, functional breath test for DPP4 enzyme activity could help to define DPP4i efficacy in patients that are refractory to treatment. We aimed to develop a selective, non-invasive, stable-isotope 13C-breath test for DPP4. In vitro experiments were performed using high (Caco-2) and low (HeLa) DPP4 expressing cells. DPP gene expression was determined in cell lines by qRT-PCR. A DPP4 selective 13C-tripeptide was added to cells in the presence and absence of the DPP4 inhibitor Sitagliptin. Gas samples were collected from the cell headspace and 13CO2 content quantified by isotope ratio mass spectrometry (IRMS). DPP4 was highly expressed in Caco-2 cells compared to HeLa cells and using the 13C-tripeptide, we detected a high 13CO2 signal from Caco2 cells. Addition of Sitaglitpin to Caco2 cells significantly inhibited this 13CO2 signal. 13C-assay DPP4 activity correlated positively with the enzyme activity detected using a colorimetric substrate. We have developed a selective, non-invasive, 13C-assay for DPP4 that could have broad translational applications in diabetes and gastrointestinal disease.
Asunto(s)
Pruebas Respiratorias/métodos , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Fosfato de Sitagliptina/farmacología , Células CACO-2 , Isótopos de Carbono/química , Diabetes Mellitus Tipo 2/enzimología , Células HeLa , HumanosRESUMEN
Lipids are important cellular components which can be significantly altered in a range of disease states including prostate cancer. Here, a unique systematic approach has been used to define lipid profiles of prostate cancer cell lines, using quantitative mass spectrometry (LC-ESI-MS/MS), FTIR spectroscopy and fluorescent microscopy. All three approaches identified significant difference in the lipid profiles of the three prostate cancer cell lines (DU145, LNCaP and 22RV1) and one non-malignant cell line (PNT1a). Specific lipid classes and species, such as phospholipids (e.g., phosphatidylethanolamine 18:1/16:0 and 18:1/18:1) and cholesteryl esters, detected by LC-ESI-MS/MS, allowed statistical separation of all four prostate cell lines. Lipid mapping by FTIR revealed that variations in these lipid classes could also be detected at a single cell level, however further investigation into this approach would be needed to generate large enough data sets for quantitation. Visualisation by fluorescence microscopy showed striking variations that could be observed in lipid staining patterns between cell lines allowing visual separation of cell lines. In particular, polar lipid staining by a fluorescent marker was observed to increase significantly in prostate cancer lines cells, when compared to PNT1a cells, which was consistent with lipid quantitation by LC-ESI-MS/MS and FTIR spectroscopy. Thus, multiple technologies can be employed to either quantify or visualise changes in lipid composition, and moreover specific lipid profiles could be used to detect and phenotype prostate cancer cells.
RESUMEN
BACKGROUND: Mucopolysaccharidosis type IVA (MPS IVA; Morquio syndrome) is a lysosomal storage disorder caused by a deficiency in the activity of the lysosomal hydrolase N-acetylgalactosamine-6-sulfatase (GALNS). MPS IVA patients can present with severe myelopathy, hearing loss, heart valve involvement, short trunk/dwarfism and corneal clouding. Early diagnosis of MPS IVA will allow potential treatments to be implemented before the onset of irreversible pathology. METHODS: We have developed a sensitive immune-quantification assay for the accurate detection of GALNS protein in skin fibroblasts, blood and plasma from unaffected control and MPS IVA patients. RESULTS: MPS IVA patient fibroblast extracts (n=11) had non-detectable (ND)-10 ng/mg of 6-sulfatase protein compared to 3-82 ng/mg for normal controls (n=19). Dried blood-spots from MPS IVA patients (n=4) contained ND-1.3 ng/L of 6-sulfatase protein compared to 18-145 ng/L for normal controls (n=49). Plasma from MPS IVA patients (n=7) contained ND 6-sulfatase protein compared to 1-9 ng/L for normal controls (n=49). CONCLUSIONS: The immune assay described here had the capacity to accurately measure the amount of GALNS protein in various biological samples, providing the basis of an assay that could be further developed to enable newborn and high-risk population screening for MPS IVA patients.
Asunto(s)
Condroitinsulfatasas/análisis , Condroitinsulfatasas/metabolismo , Salud , Mucopolisacaridosis IV/clasificación , Mucopolisacaridosis IV/enzimología , Células Cultivadas , Condroitinsulfatasas/inmunología , Humanos , Inmunoensayo , Piel/metabolismoRESUMEN
Axonal dystrophy has been described as an early pathological feature of neurodegenerative disorders including Alzheimer's disease and amyotrophic lateral sclerosis. Axonal inclusions have also been reported to occur in several neurodegenerative lysosomal storage disorders including Mucopolysaccharidosis type IIIA (MPS IIIA; Sanfilippo syndrome). This disorder results from a mutation in the gene encoding the lysosomal sulphatase sulphamidase, and as a consequence heparan sulphate accumulates, accompanied by secondarily-stored gangliosides. The precise basis of symptom generation in MPS IIIA has not been elucidated, however axonal dystrophy may conceivably lead to impaired vesicular trafficking, neuronal dysfunction and/or death. We have utilised a faithful murine model of MPS IIIA to determine the spatio-temporal profile of neuronal inclusion formation and determine the effect of restoring normal lysosomal function. Dopaminergic (tyrosine hydroxylase-positive), cholinergic (choline acetyltransferase-positive) and GABAergic (glutamic acid decarboxylase65/67-positive) neurons were found to exhibit axonal dystrophy in MPS IIIA mouse brain. Axonal lesions present by ~seven weeks of age were Rab5-positive but lysosomal integral membrane protein-2 negative, suggesting early endosomal involvement. By 9-12-weeks of age, immunoreactivity for the autophagosome-related proteins LC3 and p62 and the proteasomal subunit 19S was noted in the spheroidal structures, together with wildtype α-synuclein, phosphorylated Thr-181 Tau and amyloid precursor protein, indicative of impaired axonal trafficking. Sulphamidase replacement reduced but did not abrogate the axonal lesions. Therefore, if axonal dystrophy impairs neuronal activity and ultimately, neuronal function, its incomplete resolution warrants further investigation.
Asunto(s)
Axones/patología , Encéfalo/patología , Mucopolisacaridosis III/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Femenino , Hidrolasas/genética , Inmunohistoquímica , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis III/diagnóstico por imagen , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismoRESUMEN
Enzyme replacement therapy (ERT) has proven to be an effective therapy for some lysosomal storage disorder (LSD) patients. A potential complication during ERT is the generation of an immune response against the replacement protein. We have investigated the antigenicity of two distantly related glycosidases, alpha-glucosidase (Pompe disease or glycogen storage disease type II, GSD II), and alpha-L-iduronidase (Hurler syndrome, mucopolysaccharidosis type I, MPS I). The linear sequence epitope reactivity of affinity purified polyclonal antibodies to recombinant human alpha-glucosidase and alpha-L-iduronidase was defined, to both glycosidases. The polyclonal antibodies exhibited some cross-reactive epitopes on the two proteins. Moreover, a monoclonal antibody to the active site of alpha-glucosidase showed cross-reactivity with a catalytic structural element of alpha-L-iduronidase. In a previous study, in MPS I patients who developed an immune response to ERT, this same site on alpha-L-iduronidase was highly antigenic and the last to tolerise following repeated enzyme infusions. We conclude that glycosidases can exhibit cross-reactive epitopes, and infer that this may relate to common structural elements associated with their active sites.
Asunto(s)
Epítopos/inmunología , Iduronidasa/inmunología , alfa-Glucosidasas/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Epítopos/química , Enfermedad del Almacenamiento de Glucógeno Tipo II/inmunología , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Humanos , Iduronidasa/química , Iduronidasa/uso terapéutico , Enfermedades por Almacenamiento Lisosomal/inmunología , Enfermedades por Almacenamiento Lisosomal/terapia , Ratones , Mucopolisacaridosis I/inmunología , Mucopolisacaridosis I/terapia , alfa-Glucosidasas/química , alfa-Glucosidasas/uso terapéuticoRESUMEN
Mammalian sulphatases (EC 3.1.6) are a family of enzymes that have a high degree of similarity in amino acid sequence, structure and catalytic mechanism. IDS (iduronate-2-sulphatase; EC 3.1.6.13) is a lysosomal exo-sulphatase that belongs to this protein family and is involved in the degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate. An IDS deficiency causes the lysosomal storage disorder MPS II (mucopolysaccharidosis type II). To examine the structural alterations in heat-denatured and mutant IDS, a panel of four monoclonal antibodies was raised to the denatured protein and used as probes of protein conformation. The linear sequence epitope reactivity of a polyclonal antibody raised against the native protein and the monoclonal antibodies were defined and mapped to distinct regions on the IDS protein. The antigenicity of native IDS was higher in regions without glycosylation, but reactivity was not restricted to protein surface epitopes. One monoclonal epitope was relatively surface accessible and in close proximity to an N-linked glycosylation site, while three others required additional thermal energy to expose the epitopes. The monoclonal antibodies demonstrated the capacity to differentiate progressive structural changes in IDS and could be used to characterize the severity of MPS type II in patients based on variable denatured microstates.
Asunto(s)
Iduronato Sulfatasa/química , Iduronato Sulfatasa/genética , Mutación/genética , Edad de Inicio , Sustitución de Aminoácidos , Animales , Anticuerpos Monoclonales , Células CHO/química , Células CHO/enzimología , Células CHO/metabolismo , Línea Celular , Sistema Nervioso Central/enzimología , Sistema Nervioso Central/patología , Preescolar , Cricetinae , Cricetulus , Células Endoteliales/química , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Mapeo Epitopo/métodos , Epítopos/genética , Epítopos/inmunología , Calor , Humanos , Iduronato Sulfatasa/sangre , Iduronato Sulfatasa/inmunología , Leucocitos/química , Leucocitos/metabolismo , Hígado/citología , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Ratones , Modelos Moleculares , Mucopolisacaridosis II/sangre , Mucopolisacaridosis II/enzimología , Mucopolisacaridosis II/genética , Fenotipo , Conformación Proteica , Desnaturalización Proteica , OvinosRESUMEN
Prostate cancer continues to be a major cause of morbidity and mortality in men, but a method for accurate prognosis in these patients is yet to be developed. The recent discovery of altered endosomal biogenesis in prostate cancer has identified a fundamental change in the cell biology of this cancer, which holds great promise for the identification of novel biomarkers that can predict disease outcomes. Here we have identified significantly altered expression of endosomal genes in prostate cancer compared to non-malignant tissue in mRNA microarrays and confirmed these findings by qRT-PCR on fresh-frozen tissue. Importantly, we identified endosomal gene expression patterns that were predictive of patient outcomes. Two endosomal tri-gene signatures were identified from a previously published microarray cohort and had a significant capacity to stratify patient outcomes. The expression of APPL1, RAB5A, EEA1, PDCD6IP, NOX4 and SORT1 were altered in malignant patient tissue, when compared to indolent and normal prostate tissue. These findings support the initiation of a case-control study using larger cohorts of prostate tissue, with documented patient outcomes, to determine if different combinations of these new biomarkers can accurately predict disease status and clinical progression in prostate cancer patients.