Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 1): 118801, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555083

RESUMEN

INTRODUCTION: Exposure to trace elements has been associated with ovarian response in experimental studies. We conducted a hypothesis-generating study of associations between ovarian follicular fluid (FF) trace elements and measures of ovarian response among women using in vitro fertilization (IVF). METHODS: We collected ovarian FF specimens from 56 women. We determined concentrations (µg/L) of 11 trace elements using inductively coupled plasma-tandem mass spectrometry. We estimated associations between women's FF trace elements per interquartile range difference, and measures of ovarian response using linear (peak estradiol (E2), baseline anti-mullerian hormone (AMH), and follicle stimulating hormone (FSH)) and negative binomial (baseline antral follicle count (AFC) and oocyte count) regression, adjusting for confounding factors. We used principal component analysis (PCA) to estimate the associations of the FF trace elements mixture. We also explored FF oxidative stress enzymes as causal mediators of the associations. RESULTS: Higher FF cobalt was associated with greater peak E2 (mean difference = 351.48 pg/mL; 95%CI: 21.76, 724.71) and AFC (rate ratio = 1.14; 95%CI: 1.01, 1.28), and higher FF copper was associated with greater peak E2 (mean difference = 335.66 pg/mL; 95%CI: 81.77, 753.08) and oocyte count (rate ratio = 1.19; 95%CI: 1.02, 1.43). Higher FF mercury was also associated with greater peak E2 (mean difference = 410.70 pg/mL; 95%CI: 61.90, 883.39). Higher FF lead was associated with lesser AFC (rate ratio = 0.85; 95%CI: 0.73, 0.98). Using PCA, the mixture of Sr, Hg, and As was associated with higher peak estradiol, AFC, and oocyte count. FF glutathione peroxidase, paraoxonase, and arylesterase activities were inconsistent mediators of the associations, but the effect estimates were imprecise. CONCLUSION: Our results suggest that essential and non-essential trace elements in FF were associated with ovarian response during IVF.


Asunto(s)
Fertilización In Vitro , Líquido Folicular , Oligoelementos , Humanos , Líquido Folicular/química , Líquido Folicular/metabolismo , Femenino , Adulto , Oligoelementos/análisis , Estradiol/análisis , Hormona Folículo Estimulante/análisis , Hormona Antimülleriana/análisis , Hormona Antimülleriana/metabolismo
2.
Environ Health ; 23(1): 27, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486233

RESUMEN

BACKGROUND: A growing body of literature investigated childhood exposure to environmental chemicals in association with attention-deficit/hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay (DD), and typical development (TD). METHODS: A total of 549 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study were administered the Aberrant Behavior Checklist (ABC). This study focused on the ADHD/noncompliance subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in > 70% samples were used to investigate their associations with ADHD symptoms. Negative binomial regression was used for single-chemical analysis, and weighted quantile sum regression with repeated holdout validation was applied for mixture analysis for each chemical class and all chemicals. The mixture analyses were further stratified by diagnostic group. RESULTS: A phthalate metabolite mixture was associated with higher ADHD/noncompliance scores (median count ratio [CR] = 1.10; 2.5th, 97.5th percentile: 1.00, 1.21), especially hyperactivity/impulsivity (median CR = 1.09; 2.5th, 97.5th percentile: 1.00, 1.25). The possible contributors to these mixture effects were di-2-ethylhexyl phthalate (DEHP) metabolites and mono-2-heptyl phthalate (MHPP). These associations were likely driven by children with ASD as these were observed among children with ASD, but not among TD or those with DD. Additionally, among children with ASD, a mixture of all chemicals was associated with ADHD/noncompliance and hyperactivity/impulsivity, and possible contributors were 3,4-dihydroxy benzoic acid, DEHP metabolites, MHPP, mono-n-butyl phthalate, and cadmium. CONCLUSIONS: Early childhood exposure to a phthalate mixture was associated with ADHD symptoms, particularly among children with ASD. While the diverse diagnostic profiles limited generalizability, our findings suggest a potential link between phthalate exposure and the comorbidity of ASD and ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Dietilhexil Ftalato , Contaminantes Ambientales , Plaguicidas , Ácidos Ftálicos , Oligoelementos , Niño , Humanos , Preescolar , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/epidemiología , Parabenos/análisis , Fenoles/orina , Estudios de Casos y Controles , Ácidos Ftálicos/orina , Organofosfatos/efectos adversos , Plaguicidas/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/orina
3.
Clin Chem ; 69(1): 80-87, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36254612

RESUMEN

BACKGROUND: GlycA is a nuclear magnetic resonance (NMR) signal in plasma that correlates with inflammation and cardiovascular outcomes in large data sets. The signal is thought to originate from N-acetylglucosamine (GlcNAc) residues of branched plasma N-glycans, though direct experimental evidence is limited. Trace element concentrations affect plasma glycosylation patterns and may thereby also influence GlycA. METHODS: NMR GlycA signal was measured in plasma samples from 87 individuals and correlated with MALDI-MS N-glycomics and trace element analysis. We further evaluated the genetic association with GlycA at rs13107325, a single nucleotide polymorphism resulting in a missense variant within SLC39A8, a manganese transporter that influences N-glycan branching, both in our samples and existing genome-wide association studies data from 22 835 participants in the Women's Health Study (WHS). RESULTS: GlycA signal was correlated with both N-glycan branching (r2 ranging from 0.125-0.265; all P < 0.001) and copper concentration (r2 = 0.348, P < 0.0001). In addition, GlycA levels were associated with rs13107325 genotype in the WHS (ß [standard error of the mean] = -4.66 [1.2674], P = 0.0002). CONCLUSIONS: These results provide the first direct experimental evidence linking the GlycA NMR signal to N-glycan branching commonly associated with acute phase reactive proteins involved in inflammation.


Asunto(s)
Inflamación , Femenino , Humanos , Proteínas de Fase Aguda/análisis , Proteínas de Fase Aguda/química , Biomarcadores/química , Estudio de Asociación del Genoma Completo , Inflamación/diagnóstico , Polisacáridos/química , Oligoelementos , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Proteínas de Transporte de Catión/genética
4.
Environ Res ; 236(Pt 2): 116758, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37532213

RESUMEN

OBJECTIVE: Per- and polyfluoro-alkyl substances (PFAS) and lead (Pb) are ubiquitous environmental toxicants with apparent impact on cardiovascular disease (CVD) risk. As one possible mechanism for this increased risk, we have previously demonstrated an association between Pb exposure and heightened cardiovascular reactivity to acute psychological stress, a CVD risk factor. The present study expands this approach and considers both PFAS and Pb exposures (and the possible interaction). METHODS: We assessed 14 serum PFAS and whole blood Pb concentrations in a sample of 9-11 year-old children (N = 291; 43.2% White, 56.8% Black; 53.5% female). We measured cardiovascular functioning at rest and during psychological stress as well as multiple indicators of subclinical CVD including resting blood pressure (BP), carotid-femoral pulse wave velocity (cfPWV), carotid intima-media thickness (cIMT), and left ventricular mass (LVM). Data analysis included general linear modeling as well as a non-parametric approach to study metal mixtures, specifically Bayesian Kernel Machine Regression (BKMR). RESULTS: Significant interactions between different PFAS and with Pb suggest the importance of considering toxicant mixtures when assessing potential disruption of the cardiovascular system. The pattern of findings suggests that greater "vascular reactivity" (elevated BP and vascular resistance during acute psychological stress) was associated with higher concentrations of perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), and Pb, but only when perfluorooctanoic acid (PFOA) was concurrently elevated. With respect to subclinical outcomes, increasing perfluorodecanoic acid (PFDA) was associated with greater cIMT (ß = 0.21, p = 0.010). CONCLUSION: To our knowledge this is the first study to consider how PFAS exposures might affect cardiovascular functioning and subclinical disease. Although a complex pattern of associations emerged, it does appear that PFAS and Pb can be classified as "cardiovascular disruptors" in children. Further research is needed to replicate these novel findings and determine whether these disruptions produce future cardiovascular disease.


Asunto(s)
Ácidos Alcanesulfónicos , Enfermedades Cardiovasculares , Sistema Cardiovascular , Contaminantes Ambientales , Fluorocarburos , Humanos , Femenino , Niño , Estados Unidos , Masculino , Plomo/toxicidad , Contaminantes Ambientales/toxicidad , New York , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/epidemiología , Teorema de Bayes , Grosor Intima-Media Carotídeo , Análisis de la Onda del Pulso , Fluorocarburos/toxicidad , Ácidos Alcanesulfónicos/toxicidad
5.
Environ Res ; 223: 115450, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764435

RESUMEN

Air pollution is a serious public health issue with early childhood exposure being of high concern because of the greater risk that children might experience negative health outcomes. Industrial sources in and near communities are one potential path of exposure that children might face with greater levels of air pollution correlating with higher levels of toxicants detected in children. We compare estimated ambient air concentrations of Cadmium (Cd) to a cohort (n = 281) of 9 to 11-year old children during their early childhood years (0-5 years of age) in a mid-size city in Upstate New York. Levels of Cd air pollution are compared to children's urine-Cd levels. Urine has been shown to be a superior biomarker to blood for Cd exposure particularly for longer-term exposures. We find that participants who reside in households that faced greater Cd air pollution during the child's early years have higher urine-Cd levels. This association is stable and stronger than previously presented associations for blood-Cd. Findings support expanded use of air modelling data for risk screening to reduce the potential health burden that industrial pollution can have.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Niño , Preescolar , Cadmio , Contaminación del Aire/análisis , Ciudad de Nueva York , Contaminación Ambiental , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/análisis
6.
Int J Mol Sci ; 24(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37834424

RESUMEN

Prenatal exposure to toxic metals is associated with altered placental function and adverse infant and child health outcomes. Adverse outcomes include those that are observed at the time of birth, such as low birthweight, as well as those that arise later in life, such as neurological impairment. It is often the case that these adverse outcomes show sex-specific responses in relation to toxicant exposures. While the precise molecular mechanisms linking in utero toxic metal exposures with later-in-life health are unknown, placental inflammation is posited to play a critical role. Here, we sought to understand whether in utero metal exposure is associated with alterations in the expression of the placental proteome by identifying metal associated proteins (MAPs). Within the Extremely Low Gestational Age Newborns (ELGAN) cohort (n = 230), placental and umbilical cord tissue samples were collected at birth. Arsenic (As), cadmium (Cd), lead (Pb), selenium (Se), and manganese (Mn) concentrations were measured in umbilical cord tissue samples via ICP-MS/MS. Protein expression was examined in placental samples using an LC-MS/MS-based, global, untargeted proteomics analysis measuring more than 3400 proteins. MAPs were then evaluated for associations with pregnancy and neonatal outcomes, including placental weight and gestational age. We hypothesized that metal levels would be positively associated with the altered expression of inflammation/immune-associated pathways and that sex-specific patterns of metal-associated placental protein expression would be observed. Sex-specific analyses identified 89 unique MAPs expressed in female placentas and 41 unique MAPs expressed in male placentas. Notably, many of the female-associated MAPs are known to be involved in immune-related processes, while the male-associated MAPs are associated with intracellular transport and cell localization. Further, several MAPs were significantly associated with gestational age in males and females and placental weight in males. These data highlight the linkage between prenatal metal exposure and an altered placental proteome, with implications for altering the trajectory of fetal development.


Asunto(s)
Placenta , Proteoma , Lactante , Niño , Embarazo , Femenino , Recién Nacido , Masculino , Humanos , Placenta/metabolismo , Edad Gestacional , Proteoma/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Exposición Materna/efectos adversos , Inflamación/metabolismo
7.
Environ Res ; 193: 110302, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33049243

RESUMEN

Harmonization and traceability are related metrological principles that are indispensable to assuring measurement comparability across different biomonitoring studies. The Children's Health Exposure Analysis Resource (CHEAR) was established in 2015 with six laboratories providing environmental exposure measurements on biospecimens. To ensure harmonization across studies for trace elements, CHEAR used a multi-faceted approach that included: 1) an initial interlaboratory validation exercise based on the analysis of certified blood and urine reference materials; 2) frequent participation in an established interlaboratory proficiency program for trace elements; and 3) analysis of a common pool of well-characterized biological reference materials with each analytical batch. Method accuracy and precision were established for each laboratory via analysis of NIST SRM 955c Toxic Elements in Caprine Blood, SRM 2668 Toxic Elements in Frozen Human Urine and SRM 3668 Mercury, Perchlorate, and Iodide in Frozen Human Urine. The differences among the six laboratories for As, Cd, Hg, and Mn in urine and Cd, Hg, and Pb in whole blood were judged to be fit-for-purpose. Interlaboratory performance over a 5-year period demonstrated an improvement in performance, such that for 2018-2019, >99% of challenges for urine As, Cd, Hg, and Mn, and 95% for whole blood Cd, Hg, Pb, and Mn, were found to be satisfactory. The CHEAR common reference materials were analyzed by at least 5 laboratories for 22 elements in urine and 13-14 elements in whole blood, thus providing a rich source of data to assess intra- and inter-run performance. The suite of trace elements with assigned values in both blood and urine matrices are more comprehensive than similar reference materials from other sources, and is reflective of the concentrations necessary to support biomonitoring studies. While some areas for future improvement were identified, significant progress was made to improve harmonization of trace element measurements in biological matrices among the CHEAR network labs.


Asunto(s)
Mercurio , Oligoelementos , Animales , Niño , Salud Infantil , Cabras , Humanos , Laboratorios
8.
Environ Res ; 202: 111644, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34246641

RESUMEN

Exposure to metal mixtures may lead to health impacts greater than the effects associated with singular exposures. Two common childhood environmental exposures, manganese (Mn) and lead (Pb), are associated with similar adverse neurodevelopmental effects; however, the effects surrounding concurrent exposure to both metals remain unclear. We study the impact of joint exposure to Mn and Pb on cognitive performance in school-aged children participating in the Communities Actively Researching Exposure Study (CARES) based in East Liverpool, Ohio. Blood Pb levels were measured for each child (geometric mean (GM) = 1.13 µg/dL, range 0.30 µg/dL - 6.64 µg/dL). Mn was measured in participant blood, hair, and toenails with GMs of 10.1 µg/L, 360 ng/g, 0.974 µg/g, respectively. Trained team members administered the Wechsler Intelligence Scale for Children-IV (WISC-IV) to assess intelligence quotient (IQ). The WISC-IV provides scores for Full Scale IQ, Perceptual Reasoning, Processing Speed, Working Memory, and Verbal Comprehension. Interactions between blood Pb and all Mn biomarkers were tested in linear models adjusted for child sex, household income, and serum cotinine. Separate regression models were run for each of the Mn biomarkers. The cohort was comprised of 106 children with a mean age of 8.4 years. Interactions between blood Pb and hair Mn were significant (p < 0.05) for four out of the five IQ domains. The effect of blood Pb on IQ was more pronounced at higher levels of hair and toenail Mn. No significant associations were observed when characterizing the main effect of Mn using blood. Uncovering the health impacts associated with exposure mixtures is critical to understanding the impact of real-life conditions. Our findings suggest that joint exposure to Mn and Pb may produce heightened neurocognitive impacts even at blood Pb levels below the CDC reference concentration of 5 µg/dL.


Asunto(s)
Plomo , Manganeso , Niño , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Pruebas de Inteligencia , Plomo/toxicidad , Manganeso/toxicidad , Ohio
9.
Environ Res ; 193: 110557, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33279491

RESUMEN

BACKGROUND: Exposure to air pollution has been linked to individual health effects in occupational environments and communities proximate to air pollution sources. Use of estimated chemical concentrations from the Risk Screening Environmental Indicators (RSEI) model, derived from the Toxics Release Inventory, can help approximate some contributions to individual lifetime exposure to risk from air pollution and holds potential for linkages with specific health outcome data. OBJECTIVES: Our objectives were: (1) use regression modeling to test for associations between observed blood metal concentrations in children and RSEI total air concentrations of the same metals released from proximate manufacturing facilities; (2) determine the relative contribution of RSEI air pollution to blood metal concentrations; and (3) examine associations between chronic metal exposure and cardiovascular functioning and structure in study participants. METHODS: Using data synthesis methods and regression modeling we linked individual blood-based levels of lead, mercury, and cadmium(Pb, Hg, Cd) and cardiovascular functioning and structure to proximate industrial releases of the same metals captured by the Environmental Protection Agency's (EPA) RSEI geographic microdata. RESULTS: We found that RSEI-derived ground-level ambient air concentrations of Hg and Cd were a significant predictor of blood metal levels, when controlling for covariates and other exposure variables. In addition to associations with blood metal findings, RSEI concentrations also predicted cardiovascular dysfunction and risk including changes in left-ventricular mass, blood pressure, and heart rate. DISCUSSION: Right-to-know data, such as EPA's RSEI, can be linked to objective health outcomes, rather than simply serving as a non-specific risk estimate. These data can serve as a proxy for hazard exposure and should be used more widely to understand the dynamics of environmental exposure. Furthermore, since these data are both a product of and contribute to regulatory decision making, they could serve as an important link between disease risk and translation-orientated national environmental health policy.


Asunto(s)
Contaminación del Aire , Mercurio , Contaminación del Aire/análisis , Cadmio , Niño , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Humanos , Plomo
10.
J Toxicol Environ Health A ; 84(18): 729-742, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34167434

RESUMEN

Hair and/or nail analyses are sometimes used in biomonitoring studies due to the convenience of sample collection, storage, and transport, as well as the potential to assess past exposures to toxic metals, such as lead (Pb). However, the validity of Pb measurements in these keratinized matrices as biomarkers of absorbed dose remains unclear. The aim of this study was to examine the uptake of Pb into horns harvested postmortem from 11 goats that received a cumulative oral dose of up to 151 g Pb acetate over a period of 1-11 years as part of a long-term blood Pb proficiency testing program. Uptake of Pb into keratinized horn was compared to the corresponding underlying bony horn core, which, as part of the bone compartment, provided a measure of absorbed Pb dose. Two complementary analytical techniques were used to assess Pb: X-Ray Fluorescence (XRF) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Detectable amounts of Pb were found in all keratinized horn samples (0.45-6.6 µg/g) and in all but one bony core sample (1.4-68 µg/g). In both bony core and keratinized horn samples, Pb accumulation increased with dose over a low-to-moderate cumulative-dose interval, consistent with previous observations, but plateaued at higher doses. Significant associations were observed between Pb in keratinized horn and bony core samples particularly with XRF measurements, which represent the surface bone compartment. These findings provide evidence that Pb is excreted in keratinized tissues but reflects only a small fraction of the absorbed Pb dose, likely transferred from underlying bone tissue.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Cabras/metabolismo , Cuernos/química , Plomo/análisis , Espectrometría de Masas/veterinaria , Espectrometría por Rayos X/veterinaria , Animales , Femenino , Masculino , Espectrometría de Masas/métodos , Espectrometría por Rayos X/métodos
11.
Ecotoxicol Environ Saf ; 209: 111733, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385679

RESUMEN

Both essential and non-essential elements have been associated with female reproductive function in epidemiologic investigations, including among IVF populations. To date, most investigators have used blood or urine to assess biomarkers of exposure, with few employing ovarian follicular fluid (FF). FF may offer a more direct "snapshot" of the oocyte microenvironment than blood or urine, however previous studies report follicle-to-follicle variability in FF constituents that may contribute to exposure misclassification. Our objectives were to investigate sources of trace element variability, to estimate FF biomarker reliability among women undergoing IVF (n = 34), and to determine the minimum number of follicles required to estimate subject-specific mean concentrations. We measured As, Hg, Cd, Pb, Cu, Mn, Se, and Zn in FF samples using inductively coupled plasma tandem mass spectrometry. Inter-subject (between-women) variability contributed most of the variability in FF element concentrations, with ovarian, follicular, and analytical as smaller sources of variability. The proportion of variability attributable to sources between-follicles differed by age, body mass index (BMI), race, and cigarette smoking for Cu, Se, and Zn, by BMI and cigarette smoking for As, by primary infertility diagnosis for Hg, Cu, Se, and Zn, and by ovarian stimulation protocol for Mn and Se. Four to five individual follicles were sufficient to estimate subject-specific mean Cu, Se, and Zn concentrations, while >14 were necessary for As, Hg, Cd, Pb, and Mn. Overall, our results suggest that FF is a suitable source of biomarkers of As and Hg exposure in ovarian follicles. Although limited in size, our study offers the most comprehensive exploration of biological variation in FF trace elements to date and may provide guidance for future studies of ovarian trace element exposures.


Asunto(s)
Líquido Folicular/metabolismo , Reproducibilidad de los Resultados , Oligoelementos/metabolismo , Adulto , Femenino , Fertilización In Vitro , Líquido Folicular/química , Humanos , Mercurio/análisis , Oocitos , Folículo Ovárico , Oligoelementos/análisis
12.
Environ Health Prev Med ; 26(1): 108, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772333

RESUMEN

The USA has a high burden of childhood asthma. Previous studies have observed associations between higher blood lead levels and greater hypersensitivity in children. The objective of the present study was to estimate the association between blood lead concentrations during early childhood and an asthma diagnosis between 48 and 72 months of age amongst a cohort with well-characterized blood lead concentrations. Blood lead concentrations were measured at 6, 12, 18, 24, 36, and 48 months of age in 222 children. The presence of an asthma diagnosis between 48 and 72 months was assessed using a questionnaire which asked parents or guardians whether they had been told by a physician, in the past 12 months, that their child had asthma. Crude and adjusted risk ratios (RR) of an asthma diagnosis were estimated for several parameterizations of blood lead exposure including lifetime average (6 to 48 months) and infancy average (6 to 24 months) concentrations. After adjustment for child sex, birthweight, daycare attendance, maternal race, education, parity, breastfeeding, income, and household smoking, age-specific or composite measures of blood lead were not associated with asthma diagnosis by 72 months of age in this cohort.


Asunto(s)
Asma/diagnóstico , Contaminantes Ambientales/sangre , Plomo/sangre , Asma/epidemiología , Asma/etiología , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , New York/epidemiología
13.
Anal Bioanal Chem ; 412(8): 1847-1861, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32020317

RESUMEN

Biomonitoring for human exposure to lead, arsenic, mercury, and other toxic metal(loid)s often relies on analyzing traditional biospecimens such as blood and urine. While biomonitoring based on blood and urine is well-established, non-traditional biospecimens such as hair and nails can offer the potential to explore past exposures as well as the advantages of non-invasive collection and ease of storage. The present study describes the production of four reference materials (NYS RMs 18-01 through 18-04) based on caprine horn, a keratinized tissue similar to human hair and nails, intended to serve as a resource for calibration, quality control, and method validation purposes. The elemental content and homogeneity of these candidate reference materials were characterized for 17 elements using inductively coupled plasma mass spectrometry (ICP-MS). Commutability between two or more of the NYS caprine horn RMs and human nails was established for 8 elements (Ba, Ca, Cr, Cu, Mn, Pb, Sr, and Zn) based on analysis by ICP-MS/MS and ICP-optical emission spectrometry. The development and optimization of an ICP-MS/MS instrumental method for the determination of 17 elements in keratinized tissues is described. The method was validated against three certified reference materials based on human hair showing good accuracy and method repeatability better than 25% for all analytes. This study also describes sample preparation issues and addresses common challenges including surface contamination, microwave digestion, matrix effects, and spectral interferences in inorganic mass spectrometry. New York State Department of Health Keratin Matrix Reference Materials. Graphical abstract.


Asunto(s)
Queratinas/química , Oligoelementos/análisis , Animales , Calibración , Cabras , Cabello/química , Humanos , Límite de Detección , Uñas/química , Estándares de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Oligoelementos/normas
14.
Environ Res ; 185: 109308, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222635

RESUMEN

BACKGROUND: Initial interest in the adverse consequences of exposure to lead (Pb), mercury (Hg), and cadmium (Cd) focused on relatively high exposures through environmental or occupational sources; however, recent evidence suggests even low-level background exposure to non-essential metals might be detrimental, particularly for children's health and development. One potentially important source of increased background levels of non-essential toxic metals is diet. OBJECTIVES: We considered whether differences in diet are associated with levels of non-essential metals in blood and whether racial differences in metals are mediated by dietary differences. METHODS: We assessed blood levels of Pb, Hg, and Cd in a sample of 9-11 year-old children (N = 295) comprised of 42% European Americans (EAs), 58% African American (AAs), and 47% female. Diet was assessed using 24-h dietary recalls during phone interviews administered to parents on two consecutive days (Friday and Saturday). The Healthy Eating Index-2105 (HEI-2015) was calculated to assess diet quality. RESULTS: The current study identified significant dietary sources of non-essential metal exposure - namely total fruit for Pb, total protein for Hg, and greens and beans for Cd. Moreover, AAs were found to have significantly higher blood levels of Pb and Hg than EAs and these racial differences were significantly mediated by these dietary differences. DISCUSSION: This study is one of very few to consider total diet in children and exposure to the non-essential metals Pb, Hg, and Cd, and the first to demonstrate that racial differences in increased background blood levels of non-essential toxic metals can be accounted for by racial differences in diet. Given regional differences in food consumption patterns and specific farm and store sources for the foods, the generalizability of the current findings has yet to be determined; however, commonly consumed foods appear to be a significant source of low-level non-essential metals.


Asunto(s)
Cadmio , Mercurio , Cadmio/análisis , Niño , Dieta , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Plomo/análisis , Masculino , Mercurio/análisis
15.
Environ Res ; 188: 109753, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32554271

RESUMEN

Human exposure to non-essential toxic metals such as cadmium (Cd), mercury (Hg), and lead (Pb), and metalloids such as arsenic (As) commonly occurs through diet. Toxic trace element exposures have been reported in association with fertility and fecundity in epidemiologic studies even at low to moderate levels. While most previous studies employed blood and urine biomarkers of exposure, few have assessed toxic trace elements in ovarian follicular fluid (FF), which surrounds the developing oocyte and hence may better reflect concentrations potentially affecting reproductive outcomes. Our objective was to identify dietary predictors of FF toxic trace elements in n = 56 women (mean age: 38.3 years) undergoing in vitro fertilization (IVF) at the University of California at San Francisco. We determined As, Hg, Cd, and Pb in 197 FF specimens, collected on the day of oocyte retrieval, using inductively coupled plasma tandem mass spectrometry. A comprehensive food frequency questionnaire was used to assess the weekly and annual dietary "patterns" of participants. Consumption of specific seafood items and turkey were correlated with individual FF toxic trace elements. We also found that each unit higher seafood consumption in the past week dominated by mollusks, shrimp, and bass was associated with 60% higher FF As (95% confidence interval (CI): 25%, 105%) and FF Hg (95%CI: 7%, 136%) concentrations. Higher annual seafood consumption dominated by urchin, crab, and trout was associated with 16% higher FF As (95%CI: -2%, 38%) and 31% higher FF Hg (95%CI: 7%, 60%) concentrations per unit intake. No associations were noted between diet and Cd and Pb levels in FF. Overall, our results suggest that higher seafood consumption contributes to elevated levels of As and Hg in FF. These findings are consistent with previous IVF studies that assessed toxic trace element exposures in blood and urine. To our knowledge, this is the first study to report that diet might be a source of As, Hg, Cd, and Pb in FF.


Asunto(s)
Arsénico , Mercurio , Adulto , Animales , Cadmio , Femenino , Fertilización In Vitro , Líquido Folicular , Humanos , Alimentos Marinos/análisis
16.
J Anal At Spectrom ; 34(4): 741-752, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31036984

RESUMEN

Follicular fluid (FF), which is the fluid that envelops the developing oocyte (egg cell) in the ovary, can be analyzed to assess trace element content as well as to determine potential exposure to toxic elements in women seeking in vitro fertilization (IVF) treatment. Such measurements may be useful in establishing associations with potential adverse effects on oocyte viability and subsequent pregnancy outcomes. The principal goal of this study was to leverage the next generation of inorganic mass spectrometry based on ICP-MS/MS to address the numerous analytical challenges of (ultra-)trace element analysis of human FF specimens. Ultra-trace element measurements are defined by the Clinical Laboratory Standards Institute as fluid concentrations below 10 µg L-1 or tissue mass fractions below 1 µg g-1. Stringent pre-analytical procedures were developed to minimize exogenous contamination during FF specimen collection and storage in a prospective study of 56 women seeking IVF treatment. ICP-MS/MS instrumental parameters were carefully optimized, and the method validated for 11 biologically important elements that included 4 at trace levels (Cu, Se, Sr, and Zn) and 7 at ultra-trace levels (As, Cd, Co, Mo, Mn, Hg, and Pb). Method limits of detection (LODs) for ultra-trace elements varied from 5.6 ng L-1 for Cd to 0.11 µg L-1 for Mo. A total of 197 human FF specimens were analyzed using the proposed ICP-MS/MS method with 84% of specimens detectable for Pb and 100% detectable for Co, Cu, Mn, Mo, Sr, and Zn. The method based on ICP-MS/MS was compared to a previous method developed for FF using SF-ICP-MS.

17.
Environ Res ; 170: 463-471, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30640080

RESUMEN

BACKGROUND: Heightened blood lead levels (BLL) are associated with cognitive deficiencies and adverse behavioral outcomes. Lead-contaminated house dust is the primary source of exposure in U.S. children, and evidence suggests that even background (low-level) exposure has negative consequences. Identifying sources of background exposure is of great public health significance because of the larger number of children that can be affected. METHODS: Blood lead was assessed in a bi-racial sample of children from Syracuse, NY, aged 9-11, using established biomonitoring methods. The spatial density of vacant properties was modelled from publicly available georeferenced datasets. Further, regression models were used to measure the impact of this spatial density variable on children's BLL. RESULTS: In a sample of 221 children, with a mean BLL of 1.06 µg/dL (SD = 0.68), results showed increases in spatial density of vacant properties predict increases in median blood-PB levels, b = 0.14 (0.06-0.21), p < .001. This association held true even after accounting for demographic covariates, and age of individual housing. Further analysis showed spatial autocorrelation of the residuals changed from a clustered pattern to a random pattern once the spatial density variable was introduced to the model. DISCUSSION: This study is the first to identify a background-lead exposure source using spatial density modelling. As vacant properties deteriorate, lead-contaminated dust likely disperses into the surrounding environment. High-density areas have an accumulation of lead hazards in environmental media, namely soil and dust, putting more children at risk of exposure.


Asunto(s)
Exposición a Riesgos Ambientales , Plomo , Niño , Polvo , Femenino , Humanos , Masculino , Suelo , Pesos y Medidas
18.
Environ Res ; 179(Pt A): 108690, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31491725

RESUMEN

The New York State Department of Health conducted the Healthy Fishing Communities Program in collaboration with the Agency for Toxic Substances and Disease Registry to assess human exposure to contaminants common to Lake Ontario, Lake Erie and surrounding rivers and waterways among populations in western New York State who eat locally caught fish. The program enrolled licensed anglers and Burmese refugees and immigrants, living near four designated Great Lakes Areas of Concern: Buffalo River, Niagara River, Eighteenmile Creek, and the Rochester Embayment. These target populations were sampled and enrolled independently into the program between February and October of 2013. A core set of contaminants were measured in blood and urine of 409 licensed anglers and 206 Burmese refugees and immigrants which included lead, cadmium, mercury, PCBs, PBDEs, organochlorine pesticides (hexachlorobenzene, mirex, DDT, DDE, and chlordane and its metabolites oxychlordane and trans-Nonachlor), and PFOS and PFOA. Biomonitoring results showed that both groups had higher geometric means for blood lead, total blood mercury, and serum PFOS compared to the 2013-2014 NHANES reference levels. The Burmese refugee group also showed higher geometric means for creatinine-adjusted urine mercury and lipid-adjusted serum DDE compared to national levels. Licensed angler participants reported eating a median of 16 locally caught fish meals in the past year. Burmese participants consumed local fish throughout the year, and most frequently in the summer (median 39 fish meals or 3 times a week). The study results provide valuable information on populations at high risk of exposure to contaminants in the Great Lakes Basin of western New York. The results provide the foundation for developing and implementing public health actions to reduce potential exposures to Great Lakes pollutants.


Asunto(s)
Monitoreo Biológico , Exposición Dietética/estadística & datos numéricos , Peces , Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Niño , Femenino , Contaminación de Alimentos/estadística & datos numéricos , Great Lakes Region , Humanos , Lagos , Masculino , New York , Encuestas Nutricionales
19.
Environ Res ; 179(Pt B): 108830, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31678728

RESUMEN

BACKGROUND: Gestational cadmium exposure may impair fetal growth. Coal smoke has largely been unexplored as a source of cadmium exposure. We investigated the relationship between gestational cadmium exposure and fetal growth, and assessed coal smoke as a potential source of airborne cadmium, among non-smoking pregnant women in Ulaanbaatar, Mongolia, where coal combustion in home heating stoves is a major source of outdoor and indoor air pollution. METHODS: This observational study was nested within the Ulaanbaatar Gestation and Air Pollution Research (UGAAR) study, a randomized controlled trial of portable high efficiency particulate air (HEPA) filter air cleaner use during pregnancy, fetal growth, and early childhood development. We measured third trimester blood cadmium concentrations in 374 out of 465 participants who had a live birth. We used multiple linear and logistic regression to assess the relationships between log2-transformed maternal blood cadmium concentrations and birth weight, length, head circumference, ponderal index, low birth weight, small for gestational age, and preterm birth in crude and adjusted models. We also evaluated the relationships between log2-transformed blood cadmium concentrations and the density of coal-burning stoves within 5000 m of each participant's apartment as a proxy of coal smoke emissions from home heating stoves. RESULTS: The median (25th,75th percentile) blood cadmium concentration was 0.20 (0.15, 0.29) µg/L. A doubling of blood cadmium was associated with a 95 g (95% CI: 34, 155 g) reduction in birth weight in adjusted models. An interquartile range increase in coal stove density (from 3.4 to 4.9 gers/hectare) surrounding participants' apartments was associated with a 12.2% (95% CI: 0.3, 25.6%) increase in blood cadmium concentrations. CONCLUSIONS: Gestational cadmium exposure was associated with reduced birth weight. In settings where coal is a widely used fuel, cadmium may play a role in the putative association between air pollution and impaired fetal growth.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Cadmio/toxicidad , Carbón Mineral/toxicidad , Desarrollo Fetal/efectos de los fármacos , Contaminación del Aire/estadística & datos numéricos , Peso al Nacer , Niño , Preescolar , Femenino , Humanos , Recién Nacido , Exposición Materna/estadística & datos numéricos , Mongolia , Material Particulado , Embarazo
20.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R294-R303, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118024

RESUMEN

Environmental pollutants acting as endocrine-disrupting chemicals (EDCs) are recognized as potential contributors to metabolic disease pathogenesis. One such pollutant, arsenic, contaminates the drinking water of ~100 million people globally and has been associated with insulin resistance and diabetes in epidemiological studies. Despite these observations, the precise metabolic derangements induced by arsenic remain incompletely characterized. In the present study, the impact of arsenic on in vivo metabolic physiology was examined in 8-wk-old male C57BL/6J mice exposed to 50 mg/l inorganic arsenite in their drinking water for 8 wk. Glucose metabolism was assessed via in vivo metabolic testing, and feeding behavior was analyzed using indirect calorimetry in metabolic cages. Pancreatic islet composition was assessed via immunofluorescence microscopy. Arsenic-exposed mice exhibited impaired glucose tolerance compared with controls; however, no difference in peripheral insulin resistance was noted between groups. Instead, early insulin release during glucose challenge was attenuated relative to the rise in glycemia. Despite decreased insulin secretion, pancreatic ß-cell mass was not altered, suggesting that arsenic primarily disrupts ß-cell function. Finally, metabolic cage analyses revealed that arsenic exposure induced novel alterations in the diurnal rhythm of food intake and energy metabolism. Taken together, these data suggest that arsenic exposure impairs glucose tolerance through functional impairments in insulin secretion from ß-cells rather than by augmenting peripheral insulin resistance. Further elucidation of the mechanisms underlying arsenic-induced behavioral and ß-cell-specific metabolic disruptions will inform future intervention strategies to address this ubiquitous environmental contaminant and novel diabetes risk factor.


Asunto(s)
Arsenitos/toxicidad , Glucemia/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Metabolismo Energético/efectos de los fármacos , Intolerancia a la Glucosa/inducido químicamente , Células Secretoras de Insulina/efectos de los fármacos , Insulina/sangre , Compuestos de Sodio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/patología , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratones Endogámicos C57BL , Vías Secretoras/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA